www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Senkrechte Asymptote
Senkrechte Asymptote < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Senkrechte Asymptote: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:49 Do 05.02.2009
Autor: claudi7

Bei gebrochen rationalen Funktionen ist die senkrechte Asymptote zugleich die Polstelle bzw. Definitionslücke. Ist da so richtig?

Wie verhält es bei ganzrationalen Funktionen? Ich untersuche die Funktion auf x -->0?

        
Bezug
Senkrechte Asymptote: einsetzen
Status: (Antwort) fertig Status 
Datum: 16:54 Do 05.02.2009
Autor: Loddar

Hallo claudi!


Ganzrationale Funktionen haben normalerweise keine Definitionslücken, so dass Du hier einfach den Wert $x \ = \ 0$ einsetzen kannst.


Gruß
Loddar


Bezug
                
Bezug
Senkrechte Asymptote: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 Do 05.02.2009
Autor: claudi7


> Hallo claudi!
>  
>
> Ganzrationale Funktionen haben normalerweise keine
> Definitionslücken, so dass Du hier einfach den Wert [mm]x \ = \ 0[/mm]
> einsetzen kannst.
>  
>
> Gruß
>  Loddar
>  

Danke für die schnelle Antwort.

Bei [mm] f(x)=2x^2+3x-4 [/mm] wäre die senkrechte Asymptote x=-4. richtig und es gibt keine waagr. Asymptote da für x [mm] -->\pm\infty [/mm] y auch gegen [mm] \pm\infty [/mm] geht.



Bezug
                        
Bezug
Senkrechte Asymptote: keine senkrechten Asymptoten
Status: (Antwort) fertig Status 
Datum: 17:05 Do 05.02.2009
Autor: Loddar

Hallo claudi!


Bei ganzrationalen Funktionen gibt es keine senkrechten Asymptoten.


Gruß
Loddar


Bezug
                        
Bezug
Senkrechte Asymptote: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:50 Fr 06.02.2009
Autor: claudi7


> > Hallo claudi!
>  >  
> >
> > Ganzrationale Funktionen haben normalerweise keine
> > Definitionslücken, so dass Du hier einfach den Wert [mm]x \ = \ 0[/mm]
> > einsetzen kannst.
>  >  
> >
> > Gruß
>  >  Loddar
>  >  
> Danke für die schnelle Antwort.
>  
> Bei [mm]f(x)=2x^2+3x-4[/mm] >  

>

Wie bestimme ich die waagrechte Asymptote der Funktion?
Indem ich Werte x--> [mm] \pm \infty [/mm] einsetze?



Bezug
                                
Bezug
Senkrechte Asymptote: keine waagerechten Asymptoten
Status: (Antwort) fertig Status 
Datum: 10:55 Fr 06.02.2009
Autor: Loddar

Hallo claudi!


Ganzrationale Funktionen haben i.d.R. keine Asymptoten ... weder vertikale noch waagerechte.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de