www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Sherman-Morrison-Formel
Sherman-Morrison-Formel < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sherman-Morrison-Formel: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:40 So 28.11.2010
Autor: Sabine...

Aufgabe
Gegeben ist die []Sherman-Morrison-Formel.

Zu zeigen: [mm] A+uv^{T} [/mm] ist regulär [mm] \gdw 1+v^{T}A^{-1}u \not= [/mm] 0

[mm] A\in \IR^{(n,n)} [/mm] ist eine reguläre Matrix und u,v [mm] \in \IR^n [/mm] sind Vektoren

Hallo,

die Sherman-Morrison-Formel konnte ich beweisen. Nun soll noch die obige Aussage gezeigt werden. Ich frage mich jedoch, wie ich das am besten beweisen kann.

Für Eure Hilfe und alle Tipps bin ich sehr dankbar!

LG
Sabine

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Sherman-Morrison-Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 So 28.11.2010
Autor: rainerS

Hallo Sabine!

> Gegeben ist die
> []Sherman-Morrison-Formel.
>
> Zu zeigen: [mm]A+uv^{T}[/mm] ist regulär [mm]\gdw 1+v^{T}A^{-1}u \not=0[/mm]
>
>  
> [mm]A\in \IR^{(n,n)}[/mm] ist eine reguläre Matrix und u,v [mm]\in \IR^n[/mm]
> sind Vektoren
>  Hallo,
>  
> die Sherman-Morrison-Formel konnte ich beweisen. Nun soll
> noch die obige Aussage gezeigt werden. Ich frage mich
> jedoch, wie ich das am besten beweisen kann.
>  
> Für Eure Hilfe und alle Tipps bin ich sehr dankbar!

Bei solchen Beweisen musst du meistens geschickt von der einen oder anderen Seite multiplizieren.

Z.B. kannst du [mm]A+uv^{T}[/mm] von rechts erst mit [mm] $A^{-1}$ [/mm] und dann mit u multiplizieren:

[mm] ((A+uv^{T})*A^{-1})*u = (1+uv^TA^{-1})*u = u + uv^TA^{-1}u = u(1+v^TA^{-1}u) [/mm] .

Wenn wir den trivialen Fall u=0 ausschließen, folgt aus der Regularität von [mm]A+uv^{T}[/mm], dass die linke und damit auch die rechte Seite der Gleichungskette [mm] $\not=0$ [/mm] sind.

Jetzt musst du nur noch die andere Richtung beweisen.

Viele Grüße
   Rainer

Bezug
                
Bezug
Sherman-Morrison-Formel: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:47 Mo 29.11.2010
Autor: Sabine...

Hi,

danke für die Hilfe. Ich habe noch nicht ganz verstanden, wie in deinen Umformungen due Regularität von [mm] A+uv^T [/mm] eingegangen ist, so dass eine weitere Erläuterung für mich sehr hilfreich wäre.

Bei der Rückrichtung weiß ich leider auch nicht so ganz weiter. Ich dachte mir, ich multipliziere mit [mm] A+uv^T, [/mm] um diesen Ausdruck dort hinein zu bekommen:
[mm] (1+v^TA^{-1}u)(A+uv^T)=A+uv^T+(v^TA^{-1}u)A+(v^TA^{-1}u)uv^T \not= [/mm] 0, aber ich sehe nicht so ganz, was mir das bringen soll...

Gruß
Sabrina

Bezug
                        
Bezug
Sherman-Morrison-Formel: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:23 Mi 01.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de