www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Sigma Algebra
Sigma Algebra < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sigma Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 Di 30.10.2012
Autor: kioto

Aufgabe
seien [mm] A_{i} \in [/mm] F, i [mm] \in [/mm] I, wobei F sigma Algebra über [mm] \Omega. [/mm] Zeigen Sie, dass [mm] A_{i} [/mm] \ [mm] A_{j} \in [/mm] F.

da F ja sigma Algebra ist, muss ja gelten
[mm] A_{i} [/mm] , [mm] A_{j} \in [/mm] F, mit den drei Kriterien für sigma Algebra bin ich hier hin gekommen
[mm] \bigcap_{i=I}^{n} A_{i}, A_{j} \in [/mm] F, und weiß nicht mehr weiter.


danke schon mal!

        
Bezug
Sigma Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 14:56 Di 30.10.2012
Autor: fred97

Es ist [mm] $A_i \setminus A_j=A_i \cap (\Omega \setminus A_j) [/mm]

Bitte jeweils ankreuzen:

Ist [mm] A_i \in [/mm] F ?            ja       nein

Ist [mm] A_j \in [/mm] F ?           ja       nein

Ist [mm] \Omega \setminus A_j \in [/mm] F ?        ja       nein

Ist  [mm] A_i \cap (\Omega \setminus A_j) \in [/mm] F ?   ja       nein

FRED

Bezug
                
Bezug
Sigma Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:08 Di 30.10.2012
Autor: kioto

danke für die schnelle Antwort!

> Es ist [mm]$A_i \setminus A_j=A_i \cap (\Omega \setminus A_j)[/mm]
>  
> Bitte jeweils ankreuzen:
>  
> Ist [mm]A_i \in[/mm] F ?            ja       nein
>  
> Ist [mm]A_j \in[/mm] F ?           ja       nein
>  
> Ist [mm]\Omega \setminus A_j \in[/mm] F ?        ja       nein
>  
> Ist  [mm]A_i \cap (\Omega \setminus A_j) \in[/mm] F ?   ja      
> nein
>  

kann ich alles mit ja ankreuzen? das letzte macht mich unsicher.... aber wenn das obere gilt, dann muss es ja auch stimmen

Bezug
                        
Bezug
Sigma Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 15:11 Di 30.10.2012
Autor: schachuzipus

Hallo kioto,


> danke für die schnelle Antwort!
>  
> > Es ist [mm]$A_i \setminus A_j=A_i \cap (\Omega \setminus A_j)[/mm]
>  
> >  

> > Bitte jeweils ankreuzen:
>  >  
> > Ist [mm]A_i \in[/mm] F ?            ja       nein
>  >  
> > Ist [mm]A_j \in[/mm] F ?           ja       nein
>  >  
> > Ist [mm]\Omega \setminus A_j \in[/mm] F ?        ja       nein
>  >  
> > Ist  [mm]A_i \cap (\Omega \setminus A_j) \in[/mm] F ?   ja      
> > nein
>  >  
>
> kann ich alles mit ja ankreuzen?

Ja!

Kläre mal die folgenden Fragen:

1 und 2 kannst du nach Vor. mit "ja" beantworten, wieso kannst du 3 mit "ja" beantworten.

Und wieso dann auch 4?

> das letzte macht mich
> unsicher.... aber wenn das obere gilt, dann muss es ja auch
> stimmen

Das tut es auch, liefere du mal eine handfeste Begründung ...

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de