www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Sign berechnen
Sign berechnen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sign berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:31 Mo 19.06.2006
Autor: blinktea

Aufgabe
sign [mm] \begin{pmatrix} 1 & 2 & 3 \cdots & n \\ n & n-1 & n-2 \cdots& 1 \end{pmatrix} [/mm]

Ich habe auch die Lösung für die Aufgabe,
Fall1: n gerade, [mm] \bruch{n}{2} [/mm] Transpositionen sign [mm] \pi [/mm] = [mm] (-1)^\bruch{n}{2} [/mm]
ich versteh allerdings nicht, wie man auf [mm] \bruch{n}{2} [/mm] kommt. vielleicht könnte mir das jemand erklären.

Fall2: n ungerade....

        
Bezug
Sign berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:42 Mo 19.06.2006
Autor: mathe-trottel

hey, also genau die aufgabe hatte ich mal. du kannst dies zeigen in dem du eine fallunterscheidung für n=ungerade und n=gerade machst. ich weiß ja nicht wie hier das macht,es gibt mehrere möglichkeiten,aber mit transposition bekommt man das hin,das bedeutet du verschiebst so lange die untere 1 bis sie unter der oberen 1 steht und zählst dann einfach die verschiebungen die du mit der unteren eins machen musstes und so weiter und sofort dann mit den anderen zahlent. wenn du es für mehrere zahlen machst,wird man leicht sehen,was herauskommt

Bezug
        
Bezug
Sign berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Mo 19.06.2006
Autor: Zaed

Hallo, ...

also ich würde sagen, dass liegt wohl daran, dass du folgendes Schema an Transpositionen hast:

[mm] \vektor{1 , n}\vektor{2 , n-1}\vektor{3 , n-2}...\vektor{\bruch{n}{2} , \bruch{n}{2} + 1} [/mm]

Das kannst du oben ja direkt ablesen , ...

Es ist ebend so, dass [mm] \pi (k) = t \Rightarrow \pi (t) = k [/mm]
Also z.B. [mm] \pi (1) = n \Rightarrow \pi (n) = 1 [/mm]
Das ist etwa die Struktur, die deine Permutation besitzt...

Naja und du hast ja n Elemente, und [mm] \bruch{n}{2} [/mm] disjunkte Zyklen (Zweierzyklen = Transpositionen)


mfG Zaed

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de