www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Signumfunktion
Signumfunktion < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Signumfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:58 Mi 25.08.2004
Autor: sweetsummer16

HI! ich habe in etwa zwei Wochen eine Wiederhojungsprüfung in Mathe weil ich in die Naturwissenschaftliche Klasse übergehe. Ich kenn mich bis jetzt in allem sehr gut aus nur keiner kann mir  das erklären:

y=sgn x+1    x=-2 danny=0    x=-1 dann y=0   x=0 dann y=1
wieso hat da y diese werte?
und wieso schauen die y werte der Funktion y=sgn(x+1) dann so aus
x=-2 dann y=-1   x=-1dann y=0

von wo zählt man da auf dem graphen und wie zählt man um die y werte rauszufinden??

Ich habe diese Frage in keinem weiteren Forum gestellt.

        
Bezug
Signumfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:36 Mi 25.08.2004
Autor: AT-Colt

Servus sweetsummer16,

die Signumfunktion ist ein nettes Spielzeug der Mathematiker, aber relativ harmlos, wenn man weiss, was sie ausdrückt.

In Worten gibt die Signumfunktion an, welches Vorzeichen das Argument hat, gibst Du ein negatives Argument ein, ist der Wert der Signumfunktion -1, gibst Du etwas positives ein, ist der Wert +1, bei 0 ist auch der Wert der Signumfunktion 0.

Du kannst quasi jede reelle Zahl x darstellen als $sgn(x) * |x|$, wobei $|.|$ die Betragsfunktion ist.

Jetzt hast Du eine etwas abgewandelte Signumfunktion angegeben, sie ist einfach um ein Feld nach links verschoben (Du hast auch einen Wert falsch oben falsch aufgeschrieben, unten dann wieder richtig...)

[mm] $sgn_{x+1} [/mm] : [mm] \IR \to \{-1,0,1\}, [/mm] x [mm] \mapsto [/mm] (-1, falls x+1 < 0; 0, falls x+1 = 0; +1, falls x+1 > 0)$

Auf nem Graphen sähe das dann so aus, dass von [mm] -\infty [/mm] bis -1 eine Gerade auf Höhe -1 verlaufen würde, bei -1 ein Punkt auf der x-Achse läge und eine weitere Gerade ab diesem Punkt auf Höhe +1 sein würde.

greetz

AT-Colt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de