www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Simple Stammfunktion
Simple Stammfunktion < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Simple Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:27 Do 28.09.2006
Autor: Kristien

1.Hi, wie berechnet man die Stammfunktion von [mm] \bruch{x^2+1}{2x^2} [/mm] ? Nimmt man Nenner und Zähler auseinander, wenn ja, wie geht es dann weiter?

2.Kann bei der Integralrechnung eine Fläche eigentlich - sein?
Es gibt zwar keine -Fläche, wird damit aber nicht die Fläche unterhalb der x-Achse gemeint?

3.Wieso ist (-cos(pi)-sin(pi))-(-cos(0)-Sin(0)) =1 ???
Und wie gibt man es in den Taschenrechner???

        
Bezug
Simple Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 Do 28.09.2006
Autor: Gonozal_IX

1. Da gibt es mehrere Möglichkeiten.... die Frage ist, was du unter "auseinandernehmen" verstehst.

[mm] \bruch{x^2+1}{2x^2} [/mm] = [mm] \bruch{1}{2} [/mm] + [mm] \bruch{1}{2x^2} [/mm] und dann die

Stammfunktionen einzeln berechnen.

2. Ja und Ja :-)

3. Ist ja nicht 1, sondern 2, zumindest das was du aufgeschrieben hast.

Gruß,
Gono.

Bezug
        
Bezug
Simple Stammfunktion: Zum Sinus&cosinus
Status: (Antwort) fertig Status 
Datum: 17:48 Do 28.09.2006
Autor: M.Rex

Hallo

>  
> 3.Wieso ist (-cos(pi)-sin(pi))-(-cos(0)-Sin(0)) =1 ???
>  Und wie gibt man es in den Taschenrechner???

[mm] (-cos(\pi)-sin(\pi))-(-cos(0)-sin(0))=-cos(\pi)-sin(\pi)-cos(0)+sin(0)=-(-1)-0-1+0=0 [/mm] [notok]   leider

[mm] $(-\cos(\pi)-\sin(\pi))-(-\cos(0)-\sin(0))=-\cos(\pi)-\sin(\pi) \green{+} \cos(0)+\sin(0)=-(-1)-0 \green{+}1 [/mm] +0= [mm] \green{2}$ [/mm]

[edit] ich komme auf 2 ;-) [informix]

Gute Frage, ich komme auch auf Null


Und wenn du das in der TR eintippst, vergiss nicht, im BOGENMASS zu rechnen.

Marius

Bezug
                
Bezug
Simple Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 Do 28.09.2006
Autor: Kristien

[mm] \bruch{x^2+1}{2x^2} [/mm]  =  [mm] \bruch{1}{2} [/mm]  + [mm] \bruch{1}{2x^2} [/mm]
Wie kommt man auf diese Zerlegung also wie kommt man [mm] auf\bruch{1}{2} [/mm] und [mm] \bruch{1}{2x^2} [/mm]

Bezug
                        
Bezug
Simple Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 Do 28.09.2006
Autor: DaMenge

Hi,

es ist doch: [mm] $\bruch{x^2+1}{2x^2}=\bruch{x^2}{2x^2}+\bruch{1}{2x^2}$ [/mm]

und beim ersten Summanden kann man jetzt noch das [mm] $x^2$ [/mm] rauskürzen.

viele Grüße
Andreas


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de