Simultan Triangulierbar < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 05:51 Do 12.01.2017 | Autor: | Kakury13 |
Aufgabe | 1.) Seien V ein unitärer Vektorraum mit dim(V)=n ∈ N und f,g ∈ L(V,V) mit f◦g=g◦f. Zeigen Sie, dass f und g simultan unitär triangulierbar sind, d.h. es existiert eine ONB B von V , so dass [f]B,B und [g]B,B obere Dreiecksmatrizen sind.
2.) Zeigen Sie, dass die Bedingung f◦g=g◦f in 1.) hinreichend aber nicht notwendig ist, d.h. finden Sie einen unitären Vektorraum V mit dim(V)∈N und f,g ∈ L(V,V)
mit f◦g≠g◦f, so dass f und g simultan triangulierbar sind. |
Die 1. hab ich schon gelöst jetzt hab ich aber ein kleines Problem bei der 2. Ich bin mit der Idee rangegangen, dass über Matrizen zu lösen. Allerdings sind ja im komplexen Vektorraum sind sind alle Matrizen trigonalisierbar.
Kann mir vielleicht jemand helfen ne Idee wäre gut.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:18 Fr 13.01.2017 | Autor: | hippias |
Deine Idee war schon ganz gut:
Denk' Dir einfach $2$ obere Dreiecksmatrizen aus und definiere $f$ und $g$ als die entsprechenden Endomorphismus bzgl. Deiner Lieblingsbasis. Dann sind $f$ und $g$ in dieser gemeinsamen Basis trianglierbar.
Berechne nun die Produkte und vergleiche. Sollten $f$ und $g$ wider erwarten kommutieren, nimm andere Zahlen und erhöhe eventuell die Dimension.
|
|
|
|