www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Sind die Abbildungen linear?
Sind die Abbildungen linear? < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sind die Abbildungen linear?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:40 Mo 19.05.2008
Autor: Bockiii

Aufgabe
Es sind die folgenden Abbildungen gegeben:
©1((x; y)) = (2x ¡ 3y; 4y + x);
©2((x; y; z)) = (x2 ¡ z; y ¡ x; z ¡ y2):
Prüfen Sie jeweils, ob die Abbildungen linear sind.

Hallo,
ich weiss das die beiden Abbildungen auf Homogenität (af(x)=fa(x)) und auf Additivität (f(x+y)=f(x)+f(y)) prüfen muss. Jedoch scheitere ich schon hierran. Ich hoffe jemand kann mir einen Ansatz zeigen!
Danke schonmal für die Hilfe!
#
# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Sind die Abbildungen linear?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:45 Mo 19.05.2008
Autor: Bockiii

Aufgabe
Es sind die folgenden Abbildungen gegeben:
©1((x; y)) = (2x - 3y; 4y + x);
©2((x; y; z)) = (x2 - z; y - x; z - y2):
PrÄufen Sie jeweils, ob die Abbildungen linear sind.

Sorry ich habe gerade gemerkt das beim Kopieren ein paar Rechenzeichen verschwunden sind. Noch einmal die korrekte Aufgabe!

Bezug
        
Bezug
Sind die Abbildungen linear?: Antwort
Status: (Antwort) fertig Status 
Datum: 17:50 Mo 19.05.2008
Autor: schachuzipus

Hallo Bockiii,

> Es sind die folgenden Abbildungen gegeben:
>  ©1((x; y)) = (2x ¡ 3y; 4y + x);
> ©2((x; y; z)) = (x2 ¡ z; y ¡ x; z ¡ y2):
>  Prüfen Sie jeweils, ob die Abbildungen linear sind.
>  Hallo,
>  ich weiss das die beiden Abbildungen auf Homogenität
> (af(x)=fa(x)) und auf Additivität (f(x+y)=f(x)+f(y)) prüfen
> muss. Jedoch scheitere ich schon hierran.

Wieso?

Setze einfach nach deinem oben beschriebenen Ansatz an, es ist stumpfes Ausrechnen:

Nimm dir ein [mm] $a\in\IR$ [/mm] und beliebiges [mm] $(x,y)\in\IR^2$ [/mm] her und rechne nach, ob [mm] $f_1(a(x,y))=a\cdot{}f_1((x,y))$ [/mm] gilt

Es ist [mm] $f_1(a(x,y))=f_1((ax,ay))=(2(ax),3(ay),4(ay)+(ax))=(a(2x),a(3y),a(4y+x))=a(2x,3y,4y+x)=a\cdot{}f_1((x,y))$ [/mm]

Die anderen Bedingungen rechne genauso geradeheraus aus.

Du musst nur beachten, wie du Vektoren addierst und mit Skalaren multiplizierst...


>Ich hoffe jemand

> kann mir einen Ansatz zeigen!
>  Danke schonmal für die Hilfe!
>  #
>  # Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


LG

schachuzipus

Bezug
                
Bezug
Sind die Abbildungen linear?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 Mo 19.05.2008
Autor: Bockiii

Okay ich hab das jetzt einmal versucht.
©1((x; y)) = (2x - 3y; 4y + x)
Homogenität stimmt soweit (alpha eingesetzt und nachher ausgeklammert)
Additivität f(x+y)=f(x)+f(y) = 2x-3y+4y+x = 3x+y
Hier verstehe ich den unterschied nicht zw. f(x+y) und f(x)+f(y) würde das dort genauso aufschreiben.

©2((x; y; z)) = (x2 - z; y - x; z - y2)
Homogenität geht hier auch wunderbar da ich das alpha auch wieder zum schluss ausklammern kann
Additivität: f(x+y+z)=f(x)+f(y)+f(z) = x²-z+y-x+z-y² = x²-x-y²+y
Das bringt mich aba auch noch nicht weiter:(

Bezug
                        
Bezug
Sind die Abbildungen linear?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:37 Mo 19.05.2008
Autor: leduart

Hallo
Die Abbildung ist doch von [mm] R^2 [/mm] nach [mm] R^2 [/mm]
du musst also f(x1,y1)+f(x2,y2)=f(x1+x2,y1+y2) nachrechnen
entsprechend ist die nächste Abbildung von [mm] R^3 [/mm] nach [mm] R^3 [/mm]
also hast du einen Vektor mit 3 Komponenten!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de