www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Singulärwertzerlegung
Singulärwertzerlegung < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Singulärwertzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:44 So 25.09.2011
Autor: Zukku

Aufgabe
Man berechne die Singulärwertzerlegung der Matrix [mm] A=\pmat{ 0 & 1 & 2 \\ 1 & 0 & 1 }. [/mm]



Dies ist meine erste Singulärwertzerlegung, also stelle ich mich vielleicht blöd an. Da es sich um eine 2x3-Matrix handelt, wird die Singulärwertzerlegung also aus einer 2x2, einer 2x3 und einer 3x3-Matrix bestehen.
Ich berechne die Gram-Matrix [mm] A'A=\pmat{ 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 5 } [/mm] und dann ihre Eigenwerte [mm] (\lambda_1=6, \lambda_2=1, \lambda_3=0.) [/mm]
Nun berechne ich die zugehörigen Eigenvektoren (und normiere sie?):
Ich erhalte [mm] \frac{1}{\sqrt(30)}\vektor [/mm] {1  2  5}, [mm] \frac{1}{\sqrt(5)}\vektor [/mm] {-2  1  0} und [mm] \frac{1}{\sqrt(6)}\vektor [/mm] {1  -2  -1} (sollen "stehende" Vektoren sein)

Diese würde ich jetzt "gekippt" schreiben, um die Matrix V' zu erhalten, richtig soweit? [mm] V'=\pmat{ \frac{1}{\sqrt(30)} & \frac{2}{\sqrt(30)} &\frac{5}{\sqrt(30)} \\ \frac{-2}{\sqrt(5)} & \frac{1}{\sqrt(5)} & 0 \\ \frac{1}{\sqrt(6)} & \frac{-2}{\sqrt(6)} & \frac{-1}{\sqrt(6)} }. [/mm]

Passt das bis hierher? Und wie erhalte ich U?

Danke für eure Hilfen,
Zukku

        
Bezug
Singulärwertzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 So 25.09.2011
Autor: MathePower

Hallo Zukku,

> Man berechne die Singulärwertzerlegung der Matrix [mm]A=\pmat{ 0 & 1 & 2 \\ 1 & 0 & 1 }.[/mm]
>  
>
> Dies ist meine erste Singulärwertzerlegung, also stelle
> ich mich vielleicht blöd an. Da es sich um eine 2x3-Matrix
> handelt, wird die Singulärwertzerlegung also aus einer
> 2x2, einer 2x3 und einer 3x3-Matrix bestehen.
>  Ich berechne die Gram-Matrix [mm]A'A=\pmat{ 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 5 }[/mm]
> und dann ihre Eigenwerte [mm](\lambda_1=6, \lambda_2=1, \lambda_3=0.)[/mm]
>  
> Nun berechne ich die zugehörigen Eigenvektoren (und
> normiere sie?):
>  Ich erhalte [mm]\frac{1}{\sqrt(30)}\vektor[/mm] {1  2  5},
> [mm]\frac{1}{\sqrt(5)}\vektor[/mm] {-2  1  0} und
> [mm]\frac{1}{\sqrt(6)}\vektor[/mm] {1  -2  -1} (sollen "stehende"
> Vektoren sein)
>  
> Diese würde ich jetzt "gekippt" schreiben, um die Matrix
> V' zu erhalten, richtig soweit? [mm]V'=\pmat{ \frac{1}{\sqrt(30)} & \frac{2}{\sqrt(30)} &\frac{5}{\sqrt(30)} \\ \frac{-2}{\sqrt(5)} & \frac{1}{\sqrt(5)} & 0 \\ \frac{1}{\sqrt(6)} & \frac{-2}{\sqrt(6)} & \frac{-1}{\sqrt(6)} }.[/mm]
>  
> Passt das bis hierher? Und wie erhalte ich U?
>  


Gehe doch so vor, wie  []hier beschrieben.


> Danke für eure Hilfen,
>  Zukku


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de