www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Singulärwertzerlegung
Singulärwertzerlegung < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Singulärwertzerlegung: Problem mit Aufgabe
Status: (Frage) überfällig Status 
Datum: 18:11 Sa 12.01.2013
Autor: mikexx

Aufgabe
Es sei folgender Operator gegeben:

[mm] $T\colon L^2([0,1])\to H^1([0,1]), x\mapsto\int\limits_0^t x(s)\, [/mm] ds$

Zeige, dass die Singulärwertzerlegung von T gegeben ist durch

[mm] $\sigma_j=\frac{1}{(j-1/2)\pi},~~~~~~~~~~v_j(x)=\sqrt{2}\cos((j-1/2)\pi x),~~~~~~~~~~u_j(x)=\sqrt{2}\sin((j-1/2)\pi [/mm] x)$.



Wie kann ich diese Aufgabe lösen?

Ich weiß nicht, was ich machen muss (auch, wenn sich das blöde anhört, ich weiß es wirklich nicht).

Ich habe provisorisch den adjungierten Operator schonmal bestimmt, weiß aber nicht, ob man ihn überhaupt benötigt:

Der adjungierte Operator ist gegeben durch

[mm] $x\mapsto\int\limits_t^1 x(s)\, [/mm] ds x'(t)$.



Bitte, kann mir jemand helfen?


Ganz viele Grüße

mikexx

        
Bezug
Singulärwertzerlegung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:26 So 13.01.2013
Autor: mikexx

Aufgabe
Ich nehme an, daß dort ein Fehler in der Aufgabenstellung ist und daß man die gegebene Singulärwertzerlegung vielmehr für den Operator

[mm] $S\colon L^2([0,1]\to L^2([0,1]), x\mapsto\int\limits_0^t x(s)\, [/mm] ds$

nachweisen soll, dessen adjungierter Operator gegeben ist durch

[mm] $x\mapsto\int\limits_t^1 x(s)\, [/mm] ds$.



Zumindest kann ich dann zeigen, daß

[mm] $Sv_j=\sigma_ju_j,~~~S^{\star}u_j=\sigma_jv_j$. [/mm]

Muss man hier sonst noch etwas zeigen?

Ich würde mich sehr über Eure Hilfe freuen!

Grüße

mikexx

Bezug
                
Bezug
Singulärwertzerlegung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:07 So 13.01.2013
Autor: mikexx

Aufgabe
Ich denke ich muss noch zeigen, daß

[mm] $\left\{v_j\right\}$ [/mm] eine Orthonormalbasis von [mm] $\operatorname{ker}(S)^{\bot}$ [/mm]

und

[mm] $\left\{u_j\right\}$ [/mm] eine Orthonormalbasis von [mm] $\overline{\operatorname{ran}(S)}$ [/mm]

ist. Nun ist es ja so, daß hier [mm] $\operatorname{ker}(S)=\left\{0\right\}$ [/mm] und ebenso [mm] $\operatorname{ker}(S^{\star})=\left\{0\right\}$. [/mm]

Damit muss ich hier zeigen, daß [mm] $\left\{v_j\right\}$ [/mm] und [mm] $\left\{u_j\right\}$ [/mm] Orthonormalbasen von [mm] $L^2([0,1])$ [/mm] sind.

Ich habe bereits gezeigt, daß sie jeweils Orthonormalsysteme sind.
Nun muss ich also "nur noch" zeigen, daß

[mm] $\overline{\operatorname{span}(v_j)}=L^2([0,1])$ [/mm] und

[mm] $\overline{\operatorname{span}(u_j)}=L^2([0,1])$. [/mm]


Wie zeigt man das? Ich bekomme es leider alleine nicht hin.

Ich habe leider noch keinen Ansatz dafür...


Kann und mag mir jmd. bitte helfen?

Bezug
                        
Bezug
Singulärwertzerlegung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Di 15.01.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
Singulärwertzerlegung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Di 15.01.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Singulärwertzerlegung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mo 14.01.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de