www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Singularität bei Integral
Singularität bei Integral < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Singularität bei Integral: "Umweg"?
Status: (Frage) beantwortet Status 
Datum: 17:53 Mo 30.06.2008
Autor: FilleDeDanann

Hallo an alle,

ich komme bei folgendem Problem einfach nicht weiter, da ich die "Technik" nicht verstehe, wie man sowas angeht. Wir haben leider noch keine Residuen gehabt, aber den Cauchyschen Integralsatz für Sterngebiete und das sog. Zentrierungslemma.

Allgemein:
Wenn ich ein Wegintegral über einen Halbkreisrand berechnen soll, aber im Innern eine Singularität der Funktion vorliegt, dann muss ich doch eine Art "umweg" machen mit nem kleinen Kreis oder so...?!? Wie funktioniert das denn? Muss ich dann eine Verbindungslinie auch noch herstellen? Worüber integriere ich dann?

Konkret in der Aufgabe:
Sei [mm] \gamma [/mm] = [mm] \gamma_1+\gamma_2 [/mm] der einen Halbkreis umschließende Weg mit [mm] \gamma_1:=[-R,R] [/mm] und [mm] \gamma_2(t):=Re^{it}, 0\let\le\pi. [/mm]
Berechne:
[mm] \integral_{\gamma}^{}{\bruch{1}{1+z^2}dz} [/mm] .

Zeige:
[mm] \limes_{R\rightarrow\infty}\integral_{\gamma_2}^{}{\bruch{1}{1+z^2}dz}=0 [/mm] und folgere [mm] \integral_{-\infty}^{\infty}{\bruch{1}{1+x^2}dx}=\pi [/mm] .

Ich hab nur Vermutungen wie ich diese Aufgabe angehen sollte. Aber am meisten stört mich jetzt zunächst, dass in diesem Halbkreis bei i eben das nicht funktioniert... Was kann ich da - rein technisch (ich möchte es ja auch auf andere Funktionen anwenden können) - tun um diese Stelle zu umgehen, damit ich dann das Integral wieder berechnen kann?

Vielen Dank im Voraus falls mir jemand einen TIpp geben kann!
FilleDeDanann

        
Bezug
Singularität bei Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 Mo 30.06.2008
Autor: Merle23

Wie willst du es denn berechnen? Einfach mit dem Wegintegral oder mit irgendwelches Integralsätzen?

Wenn du das Wegintegral nimmst, dann kannste ja einfach R>1 annehmen (da du ja [mm] R\to\infty [/mm] betrachten sollst) - dann liegt i nicht auf deinem Integrationsweg.

Wenn du Integralsätze anwenden willst, dann musst du es so machen, wie du gesagt hast. Schneid' aus dem Inneren des Integrationsweges die Singularität mit einem kleinen Kreis raus. Dann hast du ja sowas wie einen Kreisring - darauf kannste einfach den Integralsatz anwenden, da du keine Singularität mehr im Inneren hast. Dann musst du aber einen Weg finden, das Wegintegral über den Kreis mit der Singularität zu berechnen (also ohne Integralsatz berechnen). Dann ziehste beide Integrale die du berechnet hast von einander ab.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de