www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Singularität z/(exp(z)-1)
Singularität z/(exp(z)-1) < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Singularität z/(exp(z)-1): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:14 Mo 16.03.2009
Autor: Master_X

Hey ihr,
könnt ihr mir bitte helfen, die Singularitäten von g(z) = [mm] \bruch{z}{exp(z)-1} [/mm] zu bestimmen?

Bis jetzt habe ich:
z=0 ist eine Singularität. Wegen der der Periodizität von exp sollten dann auch alle anderen z = [mm] 2\pi [/mm] i k , [mm] \forall [/mm] k [mm] \in \IZ [/mm] die selben Singularitäten haben.

Durch die Reihe von exp und Umformen komm ich auf:

g(z) =  [mm] \frac{1}{\summe_{j=0}^{\infty} \frac{z^j}{(j+1)!}} [/mm]

und ab da komm ich dann nicht mehr weiter. Ich bin aber ziemlich sicher, dass es ne Potenzreihe (Laurent Hauptteil 0) wird.

Schonmal Danke im Voraus.

        
Bezug
Singularität z/(exp(z)-1): Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Mo 16.03.2009
Autor: fred97


> Hey ihr,
>  könnt ihr mir bitte helfen, die Singularitäten von g(z) =
> [mm]\bruch{z}{exp(z)-1}[/mm] zu bestimmen?
>  
> Bis jetzt habe ich:
> z=0 ist eine Singularität. Wegen der der Periodizität von
> exp sollten dann auch alle anderen z = [mm]2\pi[/mm] i k , [mm]\forall[/mm] k
> [mm]\in \IZ[/mm] die selben Singularitäten haben.
>  
> Durch die Reihe von exp und Umformen komm ich auf:
>  
> g(z) =  [mm]\frac{1}{\summe_{j=0}^{\infty} \frac{z^j}{(j+1)!}}[/mm]
>  
> und ab da komm ich dann nicht mehr weiter. Ich bin aber
> ziemlich sicher, dass es ne Potenzreihe (Laurent Hauptteil
> 0) wird.
>  
> Schonmal Danke im Voraus.




Betrachte mal

    [mm]\bruch{exp(z)-1}{z}[/mm]

Es gilt [mm]\bruch{exp(z)-1}{z}[/mm]  = [mm]\bruch{exp(z)-exp(0)}{z-0}[/mm]  --> $f'(0) = 1$ (z--> 0),

wobei $f(z) = exp(z) $

Folglich: $ [mm] \bruch{z}{exp(z)-1} [/mm] $ --> 1  (z--> 0)

Nach dem Riemannschen Hebbarkeitssatz hat $ [mm] \bruch{z}{exp(z)-1} [/mm] $ in 0 eine hebbare Singularität


Sei nun k [mm] \not= [/mm] 0 und k [mm] \in \IZ [/mm]


Dann: $| [mm] \bruch{z}{exp(z)-1}| [/mm] $ --> [mm] \infty [/mm]  (z--> $2k [mm] \pi [/mm] i$)

Somit hat $ [mm] \bruch{z}{exp(z)-1} [/mm] $  in     $2k [mm] \pi [/mm] i$ einen Pol

FRED


Bezug
                
Bezug
Singularität z/(exp(z)-1): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:54 Mo 16.03.2009
Autor: Master_X

Super, danke. Habs verstanden.

Bezug
                        
Bezug
Singularität z/(exp(z)-1): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:15 Mo 16.03.2009
Autor: fred97

Prima

FRED

Bezug
                
Bezug
Singularität z/(exp(z)-1): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:16 Mo 16.03.2009
Autor: Master_X


>
> Dann: [mm]| \bruch{z}{exp(z)-1}|[/mm] --> [mm]\infty[/mm]  (z--> [mm]2k \pi i[/mm])
>  
> Somit hat [mm]\bruch{z}{exp(z)-1}[/mm]  in     [mm]2k \pi i[/mm] einen Pol
>  

Kann (könnte) ich Pole immer so bestimmen?
Wenn ich das so mache, weiß ich auf jeden Fall, dass es keine hebbare Singularität ist. Könnte es aber auch eine Wesentliche sein? Wie sehen diese aus?

Ich soll noch die Singularitäten von [mm] \frac{1- \cos(z)}{z^2(1+z)} [/mm] bestimmen.
Mit der geometrischen Reihe kam ich darauf, dass bei 0 ne hebbare Singularität ist. Nur um das Zentrum -1 bekomm ich die Reihe irgendwie nicht entwickelt und würde das dann (wenn möglich) mit dem Grenzwert machen, da ich dort einen Pol vermute.


Bezug
                        
Bezug
Singularität z/(exp(z)-1): Antwort
Status: (Antwort) fertig Status 
Datum: 19:28 Mo 16.03.2009
Autor: fred97

Es gilt für eine isolierte Singularität [mm] z_0 [/mm] von f:

    f hat in [mm] z_0 [/mm] einen Pol [mm] \gdw [/mm] $|f(z)|$ --> [mm] \infty [/mm]   für z--> [mm] z_0 [/mm]

(hattet Ihr diesen Satz ?)




Es gilt $ [mm] \frac{1- \cos(z)}{z^2(1+z)} [/mm] $ ---> 0 für z--> 0

Nach dem Riemannschen Hebbarkeitssatz hat $ [mm] \frac{1- \cos(z)}{z^2(1+z)} [/mm] $ in 0 eine hebbare Singularität



Weiter gilt:  $ [mm] |\frac{1- \cos(z)}{z^2(1+z)}| [/mm] -->  [mm] \infty [/mm]  $  für z--> -1

Somit hat  $ [mm] \frac{1- \cos(z)}{z^2(1+z)} [/mm] $ in -1 einen Pol.

FRED



Bezug
                                
Bezug
Singularität z/(exp(z)-1): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:53 Mo 16.03.2009
Autor: Master_X


> Es gilt für eine isolierte Singularität [mm]z_0[/mm] von f:
>  
> f hat in [mm]z_0[/mm] einen Pol [mm]\gdw[/mm]  [mm]|f(z)|[/mm] --> [mm]\infty[/mm]   für z-->
> [mm]z_0[/mm]
>  
> (hattet Ihr diesen Satz ?

Hatten wir noch nicht. Bringt mir aber Einiges.  



> Es gilt [mm]\frac{1- \cos(z)}{z^2(1+z)}[/mm] ---> 0 für z--> 0
>  
> Nach dem Riemannschen Hebbarkeitssatz hat [mm]\frac{1- \cos(z)}{z^2(1+z)}[/mm]
> in 0 eine hebbare Singularität
>  

Hab das mit der geometrischen Reihe gemacht. War ein bisschen umständlich hat aber geklappt.

>
> Weiter gilt:  [mm]|\frac{1- \cos(z)}{z^2(1+z)}| --> \infty [/mm]  
> für z--> -1
>  
> Somit hat  [mm]\frac{1- \cos(z)}{z^2(1+z)}[/mm] in -1 einen Pol.
>  
> FRED


Nochmal vielen Dank für deine Mühe. Hat mir Einiges  an Rumrechnen erspart.


Bezug
                                        
Bezug
Singularität z/(exp(z)-1): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:59 Mo 16.03.2009
Autor: fred97


> > Es gilt für eine isolierte Singularität [mm]z_0[/mm] von f:
>  >  
> > f hat in [mm]z_0[/mm] einen Pol [mm]\gdw[/mm]  [mm]|f(z)|[/mm] --> [mm]\infty[/mm]   für z-->
> > [mm]z_0[/mm]
>  >  
> > (hattet Ihr diesen Satz ?
>  
> Hatten wir noch nicht. Bringt mir aber Einiges.  
>
>
>
> > Es gilt [mm]\frac{1- \cos(z)}{z^2(1+z)}[/mm] ---> 0 für z--> 0
>  >  
> > Nach dem Riemannschen Hebbarkeitssatz hat [mm]\frac{1- \cos(z)}{z^2(1+z)}[/mm]
> > in 0 eine hebbare Singularität
>  >  
> Hab das mit der geometrischen Reihe gemacht. War ein
> bisschen umständlich hat aber geklappt.

Das glaube ich nicht !!

FRED

>  
> >
> > Weiter gilt:  [mm]|\frac{1- \cos(z)}{z^2(1+z)}| --> \infty[/mm]  
> > für z--> -1
>  >  
> > Somit hat  [mm]\frac{1- \cos(z)}{z^2(1+z)}[/mm] in -1 einen Pol.
>  >  
> > FRED
>  
>
> Nochmal vielen Dank für deine Mühe. Hat mir Einiges  an
> Rumrechnen erspart.
>  


Bezug
                                                
Bezug
Singularität z/(exp(z)-1): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:07 Mo 16.03.2009
Autor: Master_X


> > > Es gilt für eine isolierte Singularität [mm]z_0[/mm] von f:
>  >  >  
> > > f hat in [mm]z_0[/mm] einen Pol [mm]\gdw[/mm]  [mm]|f(z)|[/mm] --> [mm]\infty[/mm]   für z-->
> > > [mm]z_0[/mm]
>  >  >  
> > > (hattet Ihr diesen Satz ?
>  >  
> > Hatten wir noch nicht. Bringt mir aber Einiges.  
> >
> >
> >
> > > Es gilt [mm]\frac{1- \cos(z)}{z^2(1+z)}[/mm] ---> 0 für z--> 0
>  >  >  
> > > Nach dem Riemannschen Hebbarkeitssatz hat [mm]\frac{1- \cos(z)}{z^2(1+z)}[/mm]
> > > in 0 eine hebbare Singularität
>  >  >  
> > Hab das mit der geometrischen Reihe gemacht. War ein
> > bisschen umständlich hat aber geklappt.
>  
> Das glaube ich nicht !!
>  
> FRED

Stimmt. Waren -ausführlich- zwei Umformungen. Habs mit ner anderen Rechnung von heut Mittag verwechselt.
>  

> > >
> > > Weiter gilt:  [mm]|\frac{1- \cos(z)}{z^2(1+z)}| --> \infty[/mm]  
> > > für z--> -1
>  >  >  
> > > Somit hat  [mm]\frac{1- \cos(z)}{z^2(1+z)}[/mm] in -1 einen Pol.
>  >  >  
> > > FRED
>  >  
> >
> > Nochmal vielen Dank für deine Mühe. Hat mir Einiges  an
> > Rumrechnen erspart.
> >  

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de