www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Singularitäten
Singularitäten < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Singularitäten: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:03 Mo 05.01.2009
Autor: grenife

Aufgabe
Gegeben seien die durch
(a) [mm] $f(z)=\frac{\sin z}{z-\pi}$, $z\in\mathbb{C}\setminus \left\{\pi\right\}$, [/mm]
(b) [mm] $f(z)=\tan [/mm] z$, [mm] $z\in\mathbb{C}\setminus\left\{\left(k+\frac{1}{2}\right)\pi|k\in\mathbb{Z}\right\}$ [/mm]
(c) [mm] $f(z)=\frac{1}{z^2}+\exp \frac{1}{z}$, $z\in\mathbb{C}^*$ [/mm]
definierten Funktionen. Untersuchen Sie, um was für Singularitäten es sich jeweils handelt. Falls Pole vorliegen, so bestimmen Sie die Polstellenordnung.

Hallo zusammen,

wollte hier kurz meine Lösungsansätze posten und wäre dankbar, wenn jemand diese kurz kommentieren könnte.

zu (a): [mm] $\sin [/mm] z$ ist in [mm] $\mathbb{C}$ [/mm] holomorph, die Funktion [mm] $\frac{1}{z-\pi}$ [/mm] ist als rationale Funktion in [mm] $\mathbb{C}\setminus\left\{\pi\right\}$ [/mm] holomorph. $f$ besitzt demnach in [mm] $\pi$ [/mm] eine Singularität. Da [mm] $(z-\pi)$ [/mm] in [mm] $\pi$ [/mm] eine Nullstelle hat, würde ich vermuten, dass [mm] $\pi$ [/mm] ein Pol der Ordnung $1$ ist.

zu (b): [mm] $f=\frac{\sin z}{\cos z}$, [/mm] die Kosinus-Funktion ist in den Werten [mm] $\pi/2 +k\pi$, $k\in\mathbb{N}$ [/mm] nicht holomorph, also stellen diese Werte die Singularitäten von $f$ dar.

zu (c): der erste Term besitzt als rationale Funktion die Singularität $0$, der zweite Term ebenfalls. Beide Sing. sind auch nicht hebbar.

Wie kann ich denn bei den übrigen Funktionen zeigen, ob es eine hebbare Singularität, ein Pol oder eine wesentlich Sing. ist?

Vielen Dank für Eure Kommentare und viele Grüße
Gregor


        
Bezug
Singularitäten: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Mo 05.01.2009
Autor: rainerS

Hallo!

> Gegeben seien die durch
>  (a) [mm]f(z)=\frac{\sin z}{z-\pi}[/mm], [mm]z\in\mathbb{C}\setminus \left\{\pi\right\}[/mm],
>  
> (b) [mm]f(z)=\tan z[/mm],
> [mm]z\in\mathbb{C}\setminus\left\{\left(k+\frac{1}{2}\right)\pi|k\in\mathbb{Z}\right\}[/mm]
>  (c) [mm]f(z)=\frac{1}{z^2}+\exp \frac{1}{z}[/mm], [mm]z\in\mathbb{C}^*[/mm]
>  definierten Funktionen. Untersuchen Sie, um was für
> Singularitäten es sich jeweils handelt. Falls Pole
> vorliegen, so bestimmen Sie die Polstellenordnung.
>  Hallo zusammen,
>  
> wollte hier kurz meine Lösungsansätze posten und wäre
> dankbar, wenn jemand diese kurz kommentieren könnte.
>  
> zu (a): [mm]\sin z[/mm] ist in [mm]\mathbb{C}[/mm] holomorph, die Funktion
> [mm]\frac{1}{z-\pi}[/mm] ist als rationale Funktion in
> [mm]\mathbb{C}\setminus\left\{\pi\right\}[/mm] holomorph. [mm]f[/mm] besitzt
> demnach in [mm]\pi[/mm] eine Singularität. Da [mm](z-\pi)[/mm] in [mm]\pi[/mm] eine
> Nullstelle hat, würde ich vermuten, dass [mm]\pi[/mm] ein Pol der
> Ordnung [mm]1[/mm] ist.

Welchen Wert hat denn der Zähler [mm] $\sin [/mm] z$ an der Stelle [mm] $z=\pi$? [/mm]

>  
> zu (b): [mm]f=\frac{\sin z}{\cos z}[/mm], die Kosinus-Funktion ist
> in den Werten [mm]\pi/2 +k\pi[/mm], [mm]k\in\mathbb{N}[/mm] nicht holomorph,

Die Cosinusfunktion ist in ganz [mm] $\IC$ [/mm] holomorph. Du meinst, dass sie in den Werten [mm]\pi/2 +k\pi[/mm] Nullstellen hat. Welche Ordnung haben diese Nullstellen?

> also stellen diese Werte die Singularitäten von [mm]f[/mm] dar.

Das ist richtig, aber welcher Art sind diese Singularitäten?

> zu (c): der erste Term besitzt als rationale Funktion die
> Singularität [mm]0[/mm], der zweite Term ebenfalls. Beide Sing. sind
> auch nicht hebbar.

[ok]

> Wie kann ich denn bei den übrigen Funktionen zeigen, ob es
> eine hebbare Singularität, ein Pol oder eine wesentlich
> Sing. ist?

Eine hebbare Singularität in [mm] $z_0$ [/mm] liegt vor, wenn f in einer punktierten Umgebung der Singularität [mm] $z_0$ [/mm] holomorph und an der Stelle [mm] $z_0$ [/mm] holomorph (es reicht sogar stetig) fortsetzbar ist.

Daraus folgt: wenn f von der Form [mm] $f(z)=\bruch{g(z)}{h(z)}$ [/mm] ist, wobei g und h in einer Umgebung von [mm] $z_0$ [/mm] (inklusive [mm] $z_0$) [/mm] holomorph sind und [mm] $h(z_0)=0$ [/mm] mit Nullstellenordnung k ist, dann hat f eine hebbare Singularität, wenn g eine Nullstelle in [mm] $z_0$ [/mm] mit Ordnung [mm] $\ge [/mm] k$ hat.

Ein Pol von f an der Stelle [mm] $z_0$ [/mm] liegt vor, wenn es eine Zahl $k>0$ gibt, sodass [mm] $(z-z_0)^kf(z)$ [/mm] an [mm] $z_0$ [/mm] eine hebbare Singularität hat. Die kleinste solche Zahl ist die Ordnung des Pols. Aus dem vorher Gesagten folgt, dass $f=g/h$ einen Pol hat, wenn die Nullstellenordnung von h in [mm] $z_0$ [/mm] größer ist als die Nullstellenordnung von g in [mm] $z_0$. [/mm]

Eine andere Möglichkeit, den Typ der Singularität zu bestimmen, ist, die Laurententwicklung anzuschauen. Zum Beispiel bekommst du die Laurententwicklung von [mm] $\exp(1/z)$ [/mm] in 0 einfach durch Einsetzen von $1/z$ in die Taylorentwicklung der Exponentialfunktion.

Viele Grüße
   Rainer



Bezug
                
Bezug
Singularitäten: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:00 Mi 07.01.2009
Autor: grenife

Hallo Rainer,

erstmal vielen Dank für Deine Antwort!

zu a)

[mm] \sin [/mm] z besitzt in [mm] \pi [/mm] eine Nullstelle, dann folgt nach dem von Dir Gesagten bzw. dem Riemannschen Fortsetzungssatz, dass die Singularität in [mm] \pi [/mm] hebbar ist.

zu b)

[mm] \cos [/mm] z ergibt abgeleitet [mm] -\sin [/mm] z, die Sinusfunktion hat an den Nullstellen der Kosinus-Funktion keine Nullstelle, demnach sind alle Nullstellen von [mm] \cos [/mm] z von der Ordnung 1. Demnach hätte doch [mm] \tan [/mm] z in den besagten Singularitäten jeweils einen Pol 1. Ordnung oder übersehe ich da etwas?

Viele Grüße
Gregor

> Hallo!
>  
> > Gegeben seien die durch
>  >  (a) [mm]f(z)=\frac{\sin z}{z-\pi}[/mm], [mm]z\in\mathbb{C}\setminus \left\{\pi\right\}[/mm],
>  
> >  

> > (b) [mm]f(z)=\tan z[/mm],
> >
> [mm]z\in\mathbb{C}\setminus\left\{\left(k+\frac{1}{2}\right)\pi|k\in\mathbb{Z}\right\}[/mm]
>  >  (c) [mm]f(z)=\frac{1}{z^2}+\exp \frac{1}{z}[/mm],
> [mm]z\in\mathbb{C}^*[/mm]
>  >  definierten Funktionen. Untersuchen Sie, um was für
> > Singularitäten es sich jeweils handelt. Falls Pole
> > vorliegen, so bestimmen Sie die Polstellenordnung.
>  >  Hallo zusammen,
>  >  
> > wollte hier kurz meine Lösungsansätze posten und wäre
> > dankbar, wenn jemand diese kurz kommentieren könnte.
>  >  
> > zu (a): [mm]\sin z[/mm] ist in [mm]\mathbb{C}[/mm] holomorph, die Funktion
> > [mm]\frac{1}{z-\pi}[/mm] ist als rationale Funktion in
> > [mm]\mathbb{C}\setminus\left\{\pi\right\}[/mm] holomorph. [mm]f[/mm] besitzt
> > demnach in [mm]\pi[/mm] eine Singularität. Da [mm](z-\pi)[/mm] in [mm]\pi[/mm] eine
> > Nullstelle hat, würde ich vermuten, dass [mm]\pi[/mm] ein Pol der
> > Ordnung [mm]1[/mm] ist.
>  
> Welchen Wert hat denn der Zähler [mm]\sin z[/mm] an der Stelle
> [mm]z=\pi[/mm]?
>
> >  

> > zu (b): [mm]f=\frac{\sin z}{\cos z}[/mm], die Kosinus-Funktion ist
> > in den Werten [mm]\pi/2 +k\pi[/mm], [mm]k\in\mathbb{N}[/mm] nicht holomorph,
>
> Die Cosinusfunktion ist in ganz [mm]\IC[/mm] holomorph. Du meinst,
> dass sie in den Werten [mm]\pi/2 +k\pi[/mm] Nullstellen hat. Welche
> Ordnung haben diese Nullstellen?
>  
> > also stellen diese Werte die Singularitäten von [mm]f[/mm] dar.
>  
> Das ist richtig, aber welcher Art sind diese
> Singularitäten?
>  
> > zu (c): der erste Term besitzt als rationale Funktion die
> > Singularität [mm]0[/mm], der zweite Term ebenfalls. Beide Sing. sind
> > auch nicht hebbar.
>  
> [ok]
>  
> > Wie kann ich denn bei den übrigen Funktionen zeigen, ob es
> > eine hebbare Singularität, ein Pol oder eine wesentlich
> > Sing. ist?
>
> Eine hebbare Singularität in [mm]z_0[/mm] liegt vor, wenn f in einer
> punktierten Umgebung der Singularität [mm]z_0[/mm] holomorph und an
> der Stelle [mm]z_0[/mm] holomorph (es reicht sogar stetig)
> fortsetzbar ist.
>  
> Daraus folgt: wenn f von der Form [mm]f(z)=\bruch{g(z)}{h(z)}[/mm]
> ist, wobei g und h in einer Umgebung von [mm]z_0[/mm] (inklusive
> [mm]z_0[/mm]) holomorph sind und [mm]h(z_0)=0[/mm] mit Nullstellenordnung k
> ist, dann hat f eine hebbare Singularität, wenn g eine
> Nullstelle in [mm]z_0[/mm] mit Ordnung [mm]\ge k[/mm] hat.
>  
> Ein Pol von f an der Stelle [mm]z_0[/mm] liegt vor, wenn es eine
> Zahl [mm]k>0[/mm] gibt, sodass [mm](z-z_0)^kf(z)[/mm] an [mm]z_0[/mm] eine hebbare
> Singularität hat. Die kleinste solche Zahl ist die Ordnung
> des Pols. Aus dem vorher Gesagten folgt, dass [mm]f=g/h[/mm] einen
> Pol hat, wenn die Nullstellenordnung von h in [mm]z_0[/mm] größer
> ist als die Nullstellenordnung von g in [mm]z_0[/mm].
>  
> Eine andere Möglichkeit, den Typ der Singularität zu
> bestimmen, ist, die Laurententwicklung anzuschauen. Zum
> Beispiel bekommst du die Laurententwicklung von [mm]\exp(1/z)[/mm]
> in 0 einfach durch Einsetzen von [mm]1/z[/mm] in die
> Taylorentwicklung der Exponentialfunktion.
>  
> Viele Grüße
>     Rainer
>  
>  


Bezug
                        
Bezug
Singularitäten: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Mi 07.01.2009
Autor: rainerS

Hallo Gregor!

> Hallo Rainer,
>  
> erstmal vielen Dank für Deine Antwort!
>
> zu a)
>  
> [mm]\sin[/mm] z besitzt in [mm]\pi[/mm] eine Nullstelle, dann folgt nach dem
> von Dir Gesagten bzw. dem Riemannschen Fortsetzungssatz,
> dass die Singularität in [mm]\pi[/mm] hebbar ist.

[ok]

>  
> zu b)
>  
> [mm]\cos[/mm] z ergibt abgeleitet [mm]-\sin[/mm] z, die Sinusfunktion hat an
> den Nullstellen der Kosinus-Funktion keine Nullstelle,
> demnach sind alle Nullstellen von [mm]\cos[/mm] z von der Ordnung 1.
> Demnach hätte doch [mm]\tan[/mm] z in den besagten Singularitäten
> jeweils einen Pol 1. Ordnung oder übersehe ich da etwas?

[ok]

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de