www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Singularitäten / Sinus
Singularitäten / Sinus < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Singularitäten / Sinus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 Fr 18.07.2008
Autor: derdokter

Aufgabe
$f(z) := [mm] \bruch{1}{sin z}, [/mm] g(z) := [mm] sin(\bruch{1}{z}), [/mm] h(z):= [mm] \bruch{1}{sin(\bruch{1}{z})} [/mm] $
untersuchen auf Singularitäten in [mm] \IC [/mm]

Als "Lösungshinweis" steht dabei: sind die Singularitäten isoliert?
meiner Meinung nach sind die isoliert, weil der Sinus auch in C nur die normalen reellen Nullstellen hat oder?

sin(1/z) hat meiner Meinung nach eine wesentliche Singularität in 0. bei den anderen habe ich keine Ahnung, weil ich nicht weiß wie man die Laurent Reihen darstellen soll?

Kann mir jemand helfen?
Danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Singularitäten / Sinus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 Fr 18.07.2008
Autor: Leopold_Gast

[mm]f(z)[/mm]:

Die Nullstellen von [mm]\sin z[/mm] sind Singularitäten (der Nenner des Bruches darf nicht 0 werden).

[mm]\sin z = z - \frac{z^3}{6} + \frac{z^5}{120} \mp \ldots = z \left( 1 - \frac{z^2}{6} + \frac{z^4}{120} \mp \ldots \right)[/mm]

Die Klammer stellt eine in einer Umgebung von 0 holomorphe Funktion [mm]s(z)[/mm] dar mit Wert 1 bei [mm]z=0[/mm]. Also ist auch ihr Kehrwert holomorph mit Wert 1 bei [mm]z=0[/mm]. Es muß daher eine Potenzreihenentwicklung geben mit:

[mm]\frac{1}{s(z)} = 1 + a z + b z^2 + \ldots[/mm]

(Man könnte sogar noch mehr sagen: Da [mm]s(z)[/mm] gerade ist, muß auch [mm]\frac{1}{s(z)}[/mm] gerade sein, so daß die Potenzreihe nur gerade Potenzen enthält. Das ist aber für das zu Untersuchende nicht erheblich.) Es gilt also:

[mm]\frac{1}{\sin z} = \frac{1}{z} \left( 1 + a z + b z^2 + \ldots \right)[/mm]

Und jetzt kannst du die Art der Singularität [mm]z=0[/mm] sowie ihr Residuum ablesen. Und was die anderen Singularitäten angeht, kannst du ähnlich argumentieren. Mit [mm]k \in \mathbb{Z}[/mm] gilt:

[mm]\sin z = (-1)^k \sin \left( z - k \pi \right) = (-1)^k \left( ( z - k \pi) - \frac{(z - k \pi)^3}{6} + \frac{(z - k \pi)^5}{120} \mp \right)[/mm]

Und wie das nun weitergeht, sollte klar sein.



[mm]g(z)[/mm]:

Deine Ausführungen dazu sind korrekt.



[mm]h(z)[/mm]:

Singularitäten sind bei [mm]z=0[/mm] und wo [mm]\frac{1}{z} = k \pi[/mm] mit ganzzahligem [mm]k[/mm] gilt. Jetzt ist aber 0 Häufungspunkt dieser Stellen ...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de