www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Sinussatz
Sinussatz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sinussatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:01 Mi 08.11.2006
Autor: Emil2

Aufgabe
Zeigen Sie, dass die Bewegungsgleichung des ebenen Pendels als eindimensionale Gleichung gemäß

[mm] \bruch{d^2 \phi}{dt^2}=- \bruch{g}{l} sin(\phi) [/mm]

geschrieben werden kann [mm] (\phi [/mm] ist der Auslenkwinkel aus der Vertikalen).
Zeigen Sie, dass die Schwingungsdauer T ausgedrückt werden kann als

T=4 [mm] \wurzel{\bruch{l}{g}} \integral_{0}^{\bruch{\pi}{2}}{\bruch{1}{\wurlzel{1-k^2sin^2(\theta)}}d\theta} [/mm]

wobei [mm] k:=sin(\bruch{\phi_0}{2}) (\phi_0 [/mm] ist der angängliche Auslenkwinkel).

Hinweis: Drücken Sie die Bewegungsgleichung mittels [mm] u=\bruch{d\phi}{dt} [/mm] als

[mm] u\bruch{du}{d\phi} [/mm] = [mm] -\bruch{g}{l} sin(\phi) [/mm]

integrieren Sie diese und setzen Sie dann [mm] sin(\bruch{\phi}{2})= sin(\bruch{\phi_0}{2}) sin(\theta). [/mm]

Meine Frage ist nun:

Ich habe all dies ausgeführt und bin dann nach der Integration bei

[mm] \bruch{1}{2}u=\bruch{g}{l} [/mm] cos [mm] (\phi) [/mm]

Jetzt muss ich da aber eigentlich einen sinus hinbekommen.
Nun probiert habe ich es mit

[mm] cos(2x)=cos^2(x) -sin^2(x) [/mm] und [mm] sin^2(x)+cos^2(x) [/mm] =1

jedoch habe ich dann entweder noch so eine störende 2 oder eine Wurzel...

jedoch kommt dann immer nur murks raus... wäre also nett, wenn einer von euch ne Idee hätte wie ich den cosinus ausdrücken kann.

vielen lieben dank

emil

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Sinussatz: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 Mi 08.11.2006
Autor: Walde

hi Emil2,

besser wäre es, wenn du den gesamten Weg, den du schon gerechnet hast auch posten würdest (nächstes mal, ja ;-)),auch wenn das für dich mehr Arbeit ist, dann haben wir es einfacher dir zu helfen und das nützt auch dir. Ich brauchte ne ganze Weile um dahinterzusteigen was abgeht und woran es hakt.

Also: wenn du an dieser Stelle bist

[mm] u\bruch{du}{d\phi}=-\bruch{g}{l}\sin(\phi) [/mm]

[mm] \gdw u=-\bruch{g}{l}\sin(\phi)*\bruch{d\phi}{du} [/mm] substituiere [mm] \phi:=\bruch{\phi}{2}, [/mm] dann hast du [mm] \bruch{d\phi}{du}=\bruch{1}{2}\bruch{d\phi}{du} [/mm]

[mm] \gdw u=-\bruch{g}{l}\sin(\bruch{\phi}{2})*\bruch{1}{2}\bruch{d\phi}{du} [/mm]

[mm] \gdw 2u=-\bruch{g}{l}\sin(\bruch{\phi}{2})*\bruch{d\phi}{du} [/mm]

und wenn du das nach u intergrierst, hast du

[mm] \gdw u^2=\bruch{g}{l}\cos(\bruch{\phi}{2}) [/mm]

dann benutzt du, wie du schon geplant hattest [mm] \sin^2(x)+\cos^2(x)=1 [/mm]

[mm] \gdw u^2=\bruch{g}{l}\wurzel{1-\sin^2(\bruch{\phi}{2})} [/mm]

und ersetzt [mm] sin(\bruch{\phi}{2}) [/mm] wie angegeben

[mm] \gdw u^2=\bruch{g}{l}\wurzel{1-\sin^2(\bruch{\phi_0}{2})*\sin^2(\theta)} [/mm]

und mit [mm] k:=\sin^2(\bruch{\phi_0}{2}) [/mm] wie angegeben, sieht das doch schon mal wie die richtige Richtung aus.Ich hoffe es klappt so, weiter hab ich noch nicht probiert, aber ich will dir ja auch noch was übrig lassen ;-)

LG walde




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de