www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Sitzpositionen
Sitzpositionen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sitzpositionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:23 So 07.10.2007
Autor: ernstl

Aufgabe
Auf wie viele Arten können sich 7 Personen

a) auf eine Stuhlreihe mit 7 Stühlen
b) an einen runden Tisch mit 7 Plätzen
setzen?

Als Ergebnis habe ich 7! für a) und 6! für b) gegeben (ohne Gewähr auf Richtigkeit).

7! für a) kann ich noch nachvollziehen:
Das sollte jeweils die Möglichen Plätze sein, auf denen man noch nicht war.

Aber wie man bei einem runden Tisch auf 6! kommt verstehe ich nicht. Ist doch das gleiche, nur die Stühle stehen anders...?

        
Bezug
Sitzpositionen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:09 So 07.10.2007
Autor: Somebody


> Auf wie viele Arten können sich 7 Personen
>  
> a) auf eine Stuhlreihe mit 7 Stühlen
>  b) an einen runden Tisch mit 7 Plätzen
>  setzen?
>  Als Ergebnis habe ich 7! für a) und 6! für b) gegeben
> (ohne Gewähr auf Richtigkeit).
>  
> 7! für a) kann ich noch nachvollziehen:
> Das sollte jeweils die Möglichen Plätze sein, auf denen man
> noch nicht war.
>
> Aber wie man bei einem runden Tisch auf 6! kommt verstehe
> ich nicht. Ist doch das gleiche, nur die Stühle stehen
> anders...?

Du hast in einem gewissen Sinne recht. Die entscheidende Frage ist, welche Anordnungen der sitzenden Personen man als (wesentlich) "verschieden" aufzufassen beliebt.
Bei der Teilaufgabe b) (am runden Tisch) wird eben stillschweigend angenommen, dass zwei Sitzordnungen, die sich durch eine blosse Drehung in einander überführen lassen, als nicht (wesentlich) verschieden aufzufassen sind. Zu jeder speziellen (absoluten) Sitzordnung gehören also 6 dazu als (im wesentlichen) gleich aufzufassende, die man durch blosse Drehung dieser Sitzordnung erhalten kann.

Eine andere Betrachtungsweise, die zum selben Resultat [mm] $6!=\frac{7!}{7}$ [/mm] führt, ist folgende: wir dürfen eine bestimmte Person (sagen wir "Hans") auf einen beliebigen der 7 Plätze setzen, ohne dass dies die dann noch möglichen Sitzordnungen (bei Vernachlässigung einer eventuell nötigen Drehung aller Sitzenden) einschränken würde. Ist diese eine Person aber platziert, so legt sie - genau wie in der Teilaufgabe a) - eine (relativ zu ihr) absolute Sitzordnung fest, die von den restlichen 6 Personen noch auf $6!$ (wesentlich) verschiedene Arten gewählt werden kann.


Bezug
                
Bezug
Sitzpositionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:29 So 07.10.2007
Autor: ernstl

Ah OK, das habe ich verstanden. Vielen Dank.

Grüße
Ernst

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de