www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Skalarfeld integriert?
Skalarfeld integriert? < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarfeld integriert?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 Di 10.02.2015
Autor: Paivren

Hallo Leute,

habe eine Stelle im Skript, die ich nicht ganz verstehe.

Wir haben ein isotropes Skalarfeld gegeben [mm] D(\vec{k})= \bruch{1}{4\pi ^{3}} (\vec{k} [/mm] sind Wellenvektoren).
Dann wurde die Größe [mm] D(E)=D(k)\bruch{dk}{dE} [/mm] eingeführt, und daneben steht: "mit [mm] D(k)=4\pi k^{2}D(\vec{k})=\bruch{k^{2}}{\pi^{2}}" [/mm]

Ich verstehe nicht ganz, wie man von [mm] D(\vec{k}) [/mm] nach D(k) gekommen ist. Das ist doch keine Volumenintegration?!
Und auch nicht, wieso D(k) nicht mehr isotrop ist, sondern von der Länge von [mm] \vec{k} [/mm] abhängt.

Kann mir da wer auf die Sprünge helfen?

        
Bezug
Skalarfeld integriert?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:34 Di 10.02.2015
Autor: chrisno

Ist die Frage nicht besser in der Physik aufgehoben? Das sieht mir nach Festkörperphysik aus.

Bezug
        
Bezug
Skalarfeld integriert?: Antwort
Status: (Antwort) fertig Status 
Datum: 01:15 Mi 11.02.2015
Autor: andyv

Hallo,

> Hallo Leute,
>  
> habe eine Stelle im Skript, die ich nicht ganz verstehe.
>  
> Wir haben ein isotropes Skalarfeld gegeben [mm]D(\vec{k})= \bruch{1}{4\pi ^{3}} (\vec{k}[/mm]
> sind Wellenvektoren).
>  Dann wurde die Größe [mm]D(E)=D(k)\bruch{dk}{dE}[/mm]
> eingeführt, und daneben steht: "mit [mm]D(k)=4\pi k^{2}D(\vec{k})=\bruch{k^{2}}{\pi^{2}}"[/mm]
>  
> Ich verstehe nicht ganz, wie man von [mm]D(\vec{k})[/mm] nach D(k)
> gekommen ist. Das ist doch keine Volumenintegration?!

Es soll gelten [mm] $D(k)dk=D(\vec [/mm] k) d [mm] \vec [/mm] k$ mit [mm] $d\vec k=4\pi k^2 [/mm] dk$ erhälst du genau das gewünschte D(k).

>  Und auch nicht, wieso D(k) nicht mehr isotrop ist, sondern
> von der Länge von [mm]\vec{k}[/mm] abhängt.

Genau deshalb ist es doch isotrop, es hängt nicht vom Polar -bzw. Azimutwinkel ab.

>  
> Kann mir da wer auf die Sprünge helfen?

Liebe Grüße


Bezug
                
Bezug
Skalarfeld integriert?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:48 Mo 16.02.2015
Autor: Paivren

Ahh, verstehe, isotrop heißt nicht, unabhängig vom Raum, sondern nur unabhängig von der Richtung.

Vielen Dank Andyy :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de