www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Skalarprodukt
Skalarprodukt < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:06 Di 19.12.2006
Autor: Nicole1989

Hallo Leute

Ich habe hier eine Aufgabe, die ich versucht habe zu lösen. Jedoch nicht auf das Ergebnis komme. Ich habe für die X Achse mal einen Wert genommen und für die Y-Achse. Jedoch komme ich nicht weiter.

Ein Ortsvektor r schliesst mit der X-Achse und der Y-Achse je einen Winkel von 60 grad ein. Bestimmen Sie den Winkel alpha (alpha<90 grad) mit der z-Achse.

Vielen Dank für eure Hilfe

Lg Nicole



        
Bezug
Skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 Di 19.12.2006
Autor: Zwerglein

Hi, Nicole,

> Ein Ortsvektor r schliesst mit der X-Achse und der Y-Achse
> je einen Winkel von 60 grad ein. Bestimmen Sie den Winkel
> alpha (alpha<90 grad) mit der z-Achse.

Kann sein, dass mein Lösungsvorschlag zu umständlich ist, aber er führt zum Ziel:
Setze den Vektor [mm] \vec{r} [/mm] mal ganz allgemein an:

[mm] \vec{r}= \vektor{a \\ b \\ c} [/mm]

Da die Länge dieses Vektors beliebig ist, weil Du ja nur den Winkel mit der z-Achse brauchst, er andererseits nicht in der xy-Ebene liegen kann (wegen der beiden 60°-Winkel), kannst Du z.B. c [mm] \not= [/mm] 0 beliebig wählen, z.B. c=1.
Also: [mm] \vec{r}= \vektor{a \\ b \\ 1}. [/mm]
Nun zur Winkelrechnung:
[mm] \vektor{a \\ b \\ 1}\circ \vektor{1 \\ 0 \\ 0 } [/mm] = a
und wegen des 60°-Winkels:
[mm] \vektor{a \\ b \\ 1}\circ \vektor{1 \\ 0 \\ 0 } [/mm] = [mm] \wurzel{a^{2}+b^{2}+1}*cos(60°) [/mm] = [mm] \wurzel{a^{2}+b^{2}+1}*0,5. [/mm]
Gleichsetzen mit a, quadrieren und umformen:
[mm] a^{2}+b^{2}+1 [/mm] = [mm] 4a^{2} [/mm]
<=> [mm] 3a^{2} [/mm] - [mm] b^{2} [/mm] = 1.

Genauso für den Winkel mit der y-Achse:
[mm] -a^{2}+3b^{2} [/mm] = 1.

Berechnung von a und b (nur die positive Lösung brauchbar wegen des Winkels, der <90° sein soll):
a = b = [mm] \bruch{1}{2}*\wurzel{2}. [/mm]

Damit hast Du den Vektor r und kannst den Winkel mit der z-Achse rauskriegen!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de