www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Skaleneigenschaften von Produk
Skaleneigenschaften von Produk < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skaleneigenschaften von Produk: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:07 Mi 07.07.2021
Autor: Mathemurmel

Aufgabe
Bestimmen Sie die Skaleneigenschaften der folgenden Produktionsfunktionen, wobei Q für die Produktionsmenge und K sowie L für die eingesetzten Mengen an Kapital und Arbeit stehen.

a) Q = F(K,L) = 6 K^(1/3) L^(1/3)

Die gegebene Lösung lautet:

F(z*K,z*L) = ... = z^(2/3) * 6 K^(1/3) L^(1/3)

                 = z^(2/3) * F(K,L)     <  z * F(K,L)

                             abnehmende Skalarerträge

Ich selbst habe ein anderes Ergebnis erhalten: ich zeichnete die Kurven
g(z) = z  und h(z) = z^(2/3)        

und schloss daraus:                      mit SE = Skalenerträge

            0 < z < 1               zunehmende SE

                  Z = 1               konstante SE

           1 < z < unendlich    abnehmende Skalenerträge

Ich vertrehe nicht, warum das nicht die Lösung ist.

    

        
Bezug
Skaleneigenschaften von Produk: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 00:20 Fr 09.07.2021
Autor: HJKweseleit

Du hast völlig recht!

Es ist nämlich

[mm] z^{2/3} [/mm] > z für 0<z<1,
[mm] z^{2/3} [/mm] = z für z=1,
[mm] z^{2/3} [/mm] < z für 1<z.

Der Verfasser der Lösung hat vermutlich nur an z>1 gedacht, da Wirtschaftler immer nur an Expansion denken...


Man sollte die Eigenschaft besser als "gegenläufig" bezeichnen: Nehmen die Produkte ab (z<1), so nehmen die Erträge zu und umgekehrt.

Bezug
                
Bezug
Skaleneigenschaften von Produk: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 14:44 Fr 09.07.2021
Autor: Gonozal_IX

Hiho,

leider hat er im Sinne der Aufgabe nicht recht… egal woran Wirtschaftler dabei denken.

Gruß,
Gono

Bezug
        
Bezug
Skaleneigenschaften von Produk: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 Fr 09.07.2021
Autor: Gonozal_IX

Hiho,

entgegen HJKweseleit Aussage, ist die gegebene Lösung korrekt.
Es ist eine einfache Definitionsfrage.
Gilt: $F(zK,zL) = [mm] z^t [/mm] F(K,L)$ so hat F für $0<t<1$ abnehmende Skalenerträge, für $t>1$ zunehmende. Im Fall $t=1$ ist $F$ homogen.

Das macht auch völlig Sinn, denn dich interessiert die Entwicklung deiner Produktionsfunktion, wenn ich MEHR Kapital und Arbeitskraft einsetze. D.h. es wird implizit angenommen $z >1$, ansonsten würdest du nämlich WENIGER Kapital und Arbeit reinstecken.

Gruß,
Gono



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de