www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Prozesse" - Skalierter Wiener Prozess
Skalierter Wiener Prozess < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalierter Wiener Prozess: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 Mi 27.05.2020
Autor: Jellal

Guten Abend!

Angenommen W(t) sei ein Wiener Prozess und ich kenne die Identitaet [mm] W(at)=\sqrt{a}W(t). [/mm]

Weiß ich damit schon, dass W(t'):=W(at) auch ein Wiener Prozess ist?

Hintergrund ist eine Zeit-Umskalierung in einer SDE.

Mit t'=at wurde dann [mm] dW_{t} [/mm] zu [mm] \bruch{1}{\sqrt{a}}dW_{t'}. [/mm] Ist [mm] dW_{t'} [/mm] nun ein Wiener-Prozess?


Gruß

Jellal

        
Bezug
Skalierter Wiener Prozess: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 Mi 27.05.2020
Autor: Gonozal_IX

Hiho,

> Weiß ich damit schon, dass W(t'):=W(at) auch ein Wiener Prozess ist?

Ich könnte jetzt einfach "Ja" oder "Nein" schreiben, aber das wäre ja nicht zielführend.

Was muss W(t') denn erfüllen, damit es ein Wiener-Prozess ist?
Weise die Eigenschaften nach!

Gruß,
Gono

Bezug
                
Bezug
Skalierter Wiener Prozess: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:00 Do 28.05.2020
Autor: Jellal

Hallo Gono,

>  Ich könnte jetzt einfach "Ja" oder "Nein" schreiben, aber
> das wäre ja nicht zielführend.

> Was muss W(t') denn erfüllen, damit es ein Wiener-Prozess
> ist?
>  Weise die Eigenschaften nach!
>  
> Gruß,
>  Gono

(i) Fuer 0 [mm] \le [/mm] t'_{0} < t'_{1} < t'_{2} habe ich, dass Inkremente [mm] W(t'_{1})-W(t'_{0})=\sqrt{a}(W(t_{1})- W(t_{0})) [/mm] und [mm] W(t'_{2})-W(t'_{1})=\sqrt{a}(W(t_{2})- W(t_{1})) [/mm] mit zugehoerigen [mm] 0\le t_{0}
(ii) Ist X [mm] \sim N(\mu, \sigma^{2}), [/mm] so ist aX [mm] \sim N(a\mu, a^{2}\sigma^{2}) [/mm] mit a>0. Ist also [mm] W(t_{1})-W(t_{0}) [/mm] normalverteilt zu Erwartungswert 0 und Varianz [mm] t_{1}-t_{0}, [/mm] so ist [mm] W(t'_{1})-W(t'_{0})=\sqrt{a}(W(t_{1})-W(t_{0})) [/mm] (mit [mm] t'_{i}=at_{i}) [/mm] normalverteilt zu Erwartungswert 0 und Varianz [mm] a(t_{1}-t_{0})=t'_{1}-t'_{0}. [/mm]

(iii) Wenn W(t=0)=0 ist, dann auch W(t'=0)=0, da t=0 [mm] \gdw [/mm] t'=0.
(iv) Fuer festes [mm] \omega [/mm] (ein Ereignis), ist W(t) stetig in t. W(t')=W(at) ist dann auch stetig in t' (sofern t' nicht den erlaubten Definitionsbereich von W(t), also [mm] t\ge0, [/mm] verlaesst, was bei a>0 nicht moeglich ist).

Ok, das war einfacher als gedacht (sofern richtig). Ich wollte mich um das Nachweisen druecken und schauen, ob man auch so argumentieren kann?

vG.

Jellal


Bezug
                        
Bezug
Skalierter Wiener Prozess: Antwort
Status: (Antwort) fertig Status 
Datum: 11:07 Do 28.05.2020
Autor: Gonozal_IX

Hiho,

> Ok, das war einfacher als gedacht (sofern richtig).

Alles ok…

> Ich wollte mich um das Nachweisen druecken und schauen, ob man auch so argumentieren kann?

Warum drücken? Das hilft dir zu sehen, ob du es auch verstanden hast.


Gruß,
Gono

Bezug
                                
Bezug
Skalierter Wiener Prozess: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:51 Do 28.05.2020
Autor: Jellal

Ja, das stimmt. Nur wenn der Zeitplan diese kleinen zusaetzlichen Uebungen nicht vorsieht, hofft man immer auf einen schnelleren Weg... Aber dies mal war es ja nicht der Rede wert. Den Thread hier zu verfassen, hat mehr Zeit gekostet, als die eigentliche Uebung. Danke dir auf jeden Fall!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de