www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Skizzieren Sie den Graphen...
Skizzieren Sie den Graphen... < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skizzieren Sie den Graphen...: Frage
Status: (Frage) beantwortet Status 
Datum: 16:50 Do 02.06.2005
Autor: matthes

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Die Aufgabe ist:

Skizzieren Sie den Graphen einer Funktion, der den folgenden Bedingungen genügt:


-Genau ein Wendepunkt, kein Extremum
-...Drei Wendepunkte, kein Extrempunkt
-Genau zwei Tiefpunkte, genau ein Hochpunkt, genau zwei Wendepunkte
-Genau ein Tiefpunkt, kein Hochpunkt, zwei Wendepunkte

(alles mit Funktionsvorschrift)

Fragen:

1. Extremum = Extrempunkt?

2. Wie geht man an die Aufgaben ran, wenn man nicht alle Graphen auswendig kennt?(Also z.B. nicht weiss, dass [mm] y=x^3 [/mm] "genau ein Wendepunkt, kein Extremum" hat)

Ein Prinzip bzw. eine Möglichkeit wäre gut, die man anwenden kann, um einen Graphen mit bestimmten Bedingungen herauszufinden.


Danke
    



        
Bezug
Skizzieren Sie den Graphen...: Idee
Status: (Antwort) fertig Status 
Datum: 17:07 Do 02.06.2005
Autor: Bastiane

Hallo!
[willkommenmr]

> Die Aufgabe ist:
>  
> Skizzieren Sie den Graphen einer Funktion, der den
> folgenden Bedingungen genügt:
>  
>
> -Genau ein Wendepunkt, kein Extremum
>  -...Drei Wendepunkte, kein Extrempunkt
>  -Genau zwei Tiefpunkte, genau ein Hochpunkt, genau zwei
> Wendepunkte
>  -Genau ein Tiefpunkt, kein Hochpunkt, zwei Wendepunkte
>  
> (alles mit Funktionsvorschrift)
>  
> Fragen:
>
> 1. Extremum = Extrempunkt?

[daumenhoch] - also entweder ein Maximum oder ein Minimum (auch Hochpunkt und Tiefpunkt genannt ;-))
  

> 2. Wie geht man an die Aufgaben ran, wenn man nicht alle
> Graphen auswendig kennt?(Also z.B. nicht weiss, dass [mm]y=x^3[/mm]
> "genau ein Wendepunkt, kein Extremum" hat)
>  
> Ein Prinzip bzw. eine Möglichkeit wäre gut, die man
> anwenden kann, um einen Graphen mit bestimmten Bedingungen
> herauszufinden.

Mmh - also, ich glaube, so etwas musste ich noch nie machen. Aber ich würde sagen, dass du es genau andersrum probieren kannst, wie wenn du so etwas von einem Graphen bestimmen sollst. Wenn du also jetzt eine Funktion suchst, die z. B. zwei Hochpunkte und einen Tiefpunkt hat, dann nimm eine allgemeine Funktionsvorschrift (den Grad musst du dir dann allerdings schon überlegen...), bilde die Ableitungen (allgemein) davon, und dann machst du quasi eine Steckbriefaufgabe. Also in diesem Fall hier müsste es dann drei Nullstellen für die Ableitung geben (vielleicht fängst du auch einfach damit an), wobei die zweite Ableitung an zwei Stellen <0 sein muss (für die Hochpunkte) und an einer Stelle >0 (für den Tiefpunkt).
Verstehst du, was ich meine?

Keine Ahnung, ob es da noch ne andere Möglichkeit gibt...

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
Skizzieren Sie den Graphen...: MatheBank
Status: (Antwort) fertig Status 
Datum: 18:11 Do 02.06.2005
Autor: informix

Hallo matthes,
[willkommenmr]
Wir freuen uns stets über eine freundliche Begrüßung, du auch?

> Die Aufgabe ist:
>  
> Skizzieren Sie den Graphen einer Funktion, der den
> folgenden Bedingungen genügt:
>  
>
> -Genau ein Wendepunkt, kein Extremum
>  -...Drei Wendepunkte, kein Extrempunkt
>  -Genau zwei Tiefpunkte, genau ein Hochpunkt, genau zwei
> Wendepunkte
>  -Genau ein Tiefpunkt, kein Hochpunkt, zwei Wendepunkte
>  
> (alles mit Funktionsvorschrift)
>  
> Fragen:
>
> 1. Extremum = Extrempunkt?

"jein": mit Maximum, Minimum, Extremum bezeichnet man die extremen Funktionswerte,
Hoch-, Tief- und Extrempunkte sind dann die zugehörigen Punkte des Graphen!

>  
> 2. Wie geht man an die Aufgaben ran, wenn man nicht alle
> Graphen auswendig kennt?(Also z.B. nicht weiss, dass [mm]y=x^3[/mm]
> "genau ein Wendepunkt, kein Extremum" hat)
>  

Es handelt sich sicherlich um MBganzrationale MBFunktionen, die du beschreiben sollst.
Dazu solltest du den Zusammenhang zwischen dem Grad einer ganz-rat. Funktion und der Anzahl der Nullstellen, Extremstellen und Wendestellen kennen:
eine Funktion n-ten Grades hat
* höchstens n Nullstellen, n-1 Extremstellen, n-2 Wendestellen,
* zwischen zwei (benachbarten) Nullstellen mind. eine Extremstelle,
* zwischen zwei (benachbarten) Extremstellen einen Wendepunkt.
Wahrscheinlich kann man noch mehr solcher "Regeln" aufstellen, forsche selbst mal danach.

Ausgehend von den Nullstellen kannst du dir dann selbst Funktionen basteln, die die gewünschten Eigenschaften haben:
* eine Wendestelle, keine Extremstelle: $f(x) = [mm] ax^n$ [/mm] mit n ungerade;
* drei Wendestellen, keine Extremstelle:
f''(x) muss drei Nullstellen haben, aber f'(x) muss [mm] \ne0 [/mm] sein [mm] \Rightarrow [/mm] f ist also mind. vom Grad 5;
f'(x) darf nie 0 werden, ist also durchgehend positiv oder negativ.

Du merkst schon, jetzt fange ich auch an zu schwimmen; eine "ordentliche" Regel ist mir auch nicht bekannt.

Man muss schon mit den verschiedenen Eigenschaften der Funktionen "spielen". [sorry]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de