www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Axiomatische Mengenlehre" - Skizzieren von Mengen
Skizzieren von Mengen < axiomatisch < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Axiomatische Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skizzieren von Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Fr 01.11.2013
Autor: barischtoteles

Aufgabe
Gegeben sind

A:= {(x,y) [mm] \in \IR^{2} [/mm] | y=0 }
B:= {(x,y) [mm] \in \IR^{2} [/mm] | [mm] y=e^{x}-e^{-8} [/mm] }
C:= {(x,y) [mm] \in \IR^{2} [/mm] | [mm] x^{2}+y^{2}\le4^{2} [/mm] }
D:= {(x,y) [mm] \in \IR^{2} [/mm] | x> |y| }

Skizzieren Sie die folgenden Teilmengen der Ebene [mm] \IR^{2} [/mm] .
(a) A, B, C und D
(b) [mm] C_{\IR^{2}} [/mm] (A) [mm] \cup C_{\IR^{2}} [/mm] (B)
(c) C \ (D [mm] \cup [/mm] {(1,2)})

Bei dieser Aufgabe packt mich die Verzweiflung am Meisten!

Also mit [mm] \IR^{2} [/mm] habe ich generell Probleme, Zahlenpaare ok, aber mehr weiß ich nicht.
bei A: y=0 bedeutet, dass bloß x variiert ( (1,0) (2,0) (3,0) ... ) sprich die x-Achse
bei B habe ich keine Idee für die Menge
bei C bedeutet die Ungleichung, dass x und y sich zwischen 0 und 2 bewegen
bei D muss x stets positiv und größer als der Betrag des y Wertes sein.
(a) schließt alle Mengen ein, wie ist das zu Skizzieren? Schaubild?!
(b) leider überhaupt keine Ahnung
(c) die Menge C ohne die Menge D mit dem Zahlenpaar (1,2) ... sonst auch keinen Schimmer

Danke im Voraus

        
Bezug
Skizzieren von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Fr 01.11.2013
Autor: Richie1401

Hallo,

> Gegeben sind
>  
> A:= [mm] \{(x,y) \in \IR^{2} | y=0 \} [/mm]
>  B:= [mm] \{(x,y) \in \IR^{2} | y=e^{x}-e^{-8} \} [/mm]
>  C:= [mm] \{(x,y) \in \IR^{2} |x^{2}+y^{2}\le4^{2}\} [/mm]
>  D:= [mm] \{(x,y) \in \IR^{2} | x> |y| \} [/mm]
>  
> Skizzieren Sie die folgenden Teilmengen der Ebene [mm]\IR^{2}[/mm]
> .
>  (a) A, B, C und D
>  (b) [mm]C_{\IR^{2}}[/mm] (A) [mm]\cup C_{\IR^{2}}[/mm] (B)
>  (c) C \ (D [mm]\cup[/mm] [mm] \{(1,2)\}) [/mm]
>  Bei dieser Aufgabe packt mich die Verzweiflung am
> Meisten!
>  
> Also mit [mm]\IR^{2}[/mm] habe ich generell Probleme, Zahlenpaare
> ok, aber mehr weiß ich nicht.
> bei A: y=0 bedeutet, dass bloß x variiert ( (1,0) (2,0)
> (3,0) ... ) sprich die x-Achse

So sei es!

>  bei B habe ich keine Idee für die Menge

Aber warum? ;-) Das ist doch eine ganz normale Funktion. Und die Menge der Punkt ist gerade der Graph der Funktion [mm] f(x)=y=e^{x}-e^{-8} [/mm]

>  bei C bedeutet die Ungleichung, dass x und y sich zwischen
> 0 und 2 bewegen

Es handelt sich doch hier um die Kreisgleichung. Ich denke, dass diese dir noch aus der Schule bekannt ist. Du hast hier also einen Kreis um den Mittelpunkt (0,0) mit dem Radius r=2. Da hier [mm] \le [/mm] steht, bekommst du somit also eine Kreisscheibe.

>  bei D muss x stets positiv und größer als der Betrag des
> y Wertes sein.

Hier könntest du noch einmal an eine Funktion denken. Was wäre denn die Menge y=|x| ? Und nun: Was ist die Menge [mm] y\ge [/mm] |x|? Und jetzt "vertauscht" man y und x. Das ist ja quasi nur eine Drehung des Sachverhaltes. ;-)

>  (a) schließt alle Mengen ein, wie ist das zu Skizzieren?
> Schaubild?!

Ich glaube hier will man erst einmal nur, dass du jede Menge einzeln mal zeichnest. Damit überhaupt klar ist, wie die Mengen aussehen. Dann kann man sich ja auf Aufgabe (b), und (c) stürzen.

Ist denn generell erst einmal klar, wie die mengen A, B, C und D nun aussehen?
Vielleicht hast du die Möglichkeit eine Skizze anzufertigen, dann einzuscannen und hier hochzuladen. Dann geht das überprüfen schneller und einfacher.

>  (b) leider überhaupt keine Ahnung
>  (c) die Menge C ohne die Menge D mit dem Zahlenpaar (1,2)
> ... sonst auch keinen Schimmer
>  
> Danke im Voraus


Bezug
                
Bezug
Skizzieren von Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:21 Sa 02.11.2013
Autor: barischtoteles

[IMG]http://i43.tinypic.com/2gw6za1.jpg[/IMG]

Sorry  für die schlampige Darstellung.
Also B ist somit der Bereich zwischen gewöhnlicher e funktion und x Achse oder?
C ist die kreisfläche inklusive Kreis.
D die schraffierte Fläche aber ohne die winkelhalbierenden.
Richtig so?

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                        
Bezug
Skizzieren von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:41 Sa 02.11.2013
Autor: Diophant

Hallo,

> Sorry für die schlampige Darstellung.
> Also B ist somit der Bereich zwischen gewöhnlicher e
> funktion und x Achse oder?

Nein, B ist eine Kurve!

> C ist die kreisfläche inklusive Kreis.

C ist eine Kreisscheibe inkl. Rand um den Ursprung mit dem Radius r=2, falls du das meinst. ;-)

> D die schraffierte Fläche aber ohne die
> winkelhalbierenden.

Ja, das stimmt [ok]


Gruß, Diophant

PS: wenn du das nächste Mal eine händische Zeichnung einscanst, um sie hier hochzuladen, achte doch mal ein bisschen auf die Skalierung. Für ein Forum wie dieses wäre es optimal, eine maximale Breite von ca. 800px nicht zu überschreiten.

Bezug
                                
Bezug
Skizzieren von Mengen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:58 Sa 02.11.2013
Autor: barischtoteles

Alles klar vielen Dank.
Was ich nicht verstehe: wenn B lediglich die Kurve der e funktion ist, wozu dann das - [mm] e^{-8}? [/mm]
Und die Teilaufgaben (b)  und (c)  verstehe ich nicht ganz
(c) bedeutet die Menge C ohne D und ohne 1 und 2?
(b) C aus A und C aus B?

Bezug
                                        
Bezug
Skizzieren von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:07 Sa 02.11.2013
Autor: Diophant

Hallo,

> Alles klar vielen Dank.
> Was ich nicht verstehe: wenn B lediglich die Kurve der e
> funktion ist, wozu dann das - [mm]e^{-8}?[/mm]

B ist das Schaubild der Funktion

[mm] f(x)e^x-e^{-8} [/mm]

Ich denke mal, diese Teilaufgabe soll einem vor Augen führen, dass man im [mm] \IR^2 [/mm] im Fall einer Gleichung in zwei Variablen eine i.d.R. eine Kurve als Punktmenge bekommt, sicherlich aber keine Fläche!
 

> Und die Teilaufgaben (b) und (c) verstehe ich nicht ganz
> (c) bedeutet die Menge C ohne D und ohne 1 und 2?

Fast. Mit (1,2) ist hier der Pung (1|2) gemeint!

> (b) C aus A und C aus B?

Hier ist mir leider die Schreibweise nicht geläufig. Soll das für das Komplement bezüglich des [mm] \IR^2 [/mm] stehen?

Ich stelle daher mal auf 'teilweise beantwortet'.


Gruß, Diophant

Bezug
                                                
Bezug
Skizzieren von Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:14 Sa 02.11.2013
Autor: barischtoteles

Wenn ich die Funktion in de Taschenrechner eingebe spuckt er mir exakt das gleiche schaubild  wie [mm] e^{x} [/mm]  aus?

Bezug
                                                        
Bezug
Skizzieren von Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:17 Sa 02.11.2013
Autor: Diophant

Hallo,

> Wenn ich die Funktion in de Taschenrechner eingebe spuckt
> er mir exakt das gleiche schaubild wie [mm]e^{x}[/mm] aus?

nein: es ist im Vergleich zur e-Funktion nach unten verschoben, wenn auch nur gering. Verabschiede dich mal ganz schnell von dieser GTR-Gläubigkeit aus der Schule, das hat mit Mathematik nichts zu tun!

Gruß, Diophant

Bezug
                                                                
Bezug
Skizzieren von Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:23 Sa 02.11.2013
Autor: barischtoteles

Okay, zeichnerisch kann ich das aber nur sehr schwer darstellen. Vielen Dank schon mal! Bei der Teilaufgabe (b) werde ich wohl weitersuchen müssen.

Bezug
                                                                        
Bezug
Skizzieren von Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:33 Sa 02.11.2013
Autor: Diophant

Hallo,

> Okay, zeichnerisch kann ich das aber nur sehr schwer
> darstellen. Vielen Dank schon mal! Bei der Teilaufgabe (b)
> werde ich wohl weitersuchen müssen.

Die Schreibweise ist doch nicht vom Himmel gefallen. Lehrbuch, Unterlagen, Mitschrieb, etc: irgendwo musst du das doch nachschlagen können?

Ich vermute schon, dass

[mm] C_{\IR^2}(A) [/mm]

das Komplement von A bezüglich des [mm] \IR^2 [/mm] ist, nur weiß ich es in dem Sinn nicht sicher, als ich diese Schreibweise so bisher nicht kannte (obwohl ich sagen muss, dass sie Sinn macht!).


Gruß, Diophant

Bezug
                                                                                
Bezug
Skizzieren von Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:08 Sa 02.11.2013
Autor: barischtoteles

Ich finde keine derartige Schreibweise in meinen aufschrieben und das Lehrbuch habe ich momentan nicht dabei.  Aber im Netz habe ich ähnliches gefunden, das deine Aussage bestätigt. Das Komplement. Was bedeutet das jetzt aber?

Bezug
                                                                                        
Bezug
Skizzieren von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:31 Sa 02.11.2013
Autor: Diophant

Hallo,

[mm] C_{\IR^2}(A) [/mm] besteht dann aus allen Elementen des [mm] \IR^2, [/mm] die nicht zu A gehören. Man könnte also auch

[mm] C_{\IR^2}(A)=\IR^2\setminus [/mm] A

schreiben.


Gruß, Diophant

Bezug
                                                                                                
Bezug
Skizzieren von Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:32 Sa 02.11.2013
Autor: barischtoteles

[img] http://oi40.tinypic.com/vcwdu1.jpg [mm] [\img] [/mm]
Ist das richtig so?

Bezug
                                                                                                        
Bezug
Skizzieren von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Sa 02.11.2013
Autor: schachuzipus

Hallo,

ja, (b) ist richtig!

Gruß

schachuzipus

Bezug
                                                                                                                
Bezug
Skizzieren von Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:36 So 03.11.2013
Autor: barischtoteles

Vielen Dank!

Bezug
                                                                                                                
Bezug
Skizzieren von Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:40 So 03.11.2013
Autor: barischtoteles

Bei der letzten Teilaufgabe soll der Punkt (1/2) ebenfalls ausgeschlossen werden, dieser gehört jedoch sowieso nicht zu den Mengen?

Bezug
                                                                                                                        
Bezug
Skizzieren von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:59 So 03.11.2013
Autor: Diophant

Hallo,

vorneweg: achte mal darauf, fachliche Fragen auch als Fragen einzustellen, sonst gehen sie leicht unter!

> Bei der letzten Teilaufgabe soll der Punkt (1/2) ebenfalls
> ausgeschlossen werden, dieser gehört jedoch sowieso nicht
> zu den Mengen?

Wie meinst du das nun wieder? Zunächst mal ist D und der Punkt (1,2) zu vereinigen und das ganze von C abzuziehen. Das hat schon seine Relevanz.

Gruß, Diophant

Bezug
                
Bezug
Skizzieren von Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:49 So 03.11.2013
Autor: barischtoteles


> Du
> hast hier also einen Kreis um den Mittelpunkt (0,0) mit dem
> Radius r=2. Da hier [mm]\le[/mm] steht, bekommst du somit also eine
> Kreisscheibe.
>  

Halt mal, r muss doch 4 betragen und nicht 2


Bezug
                        
Bezug
Skizzieren von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:05 So 03.11.2013
Autor: angela.h.b.

>
> > Du
> > hast hier also einen Kreis um den Mittelpunkt (0,0) mit dem
> > Radius r=2. Da hier [mm]\le[/mm] steht, bekommst du somit also eine
> > Kreisscheibe.
> >
> Halt mal, r muss doch 4 betragen und nicht 2

Hallo,

falls Du von der Menge
C:= [mm] \{(x,y) \in \IR^{2} | x^{2}+y^{2}\le 4^{2} \} [/mm]
redest, stimmt das.

LG Angela
>

Bezug
                                
Bezug
Skizzieren von Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:32 So 03.11.2013
Autor: Diophant

Hallo,

> > > Du
> > > hast hier also einen Kreis um den Mittelpunkt (0,0)
> mit dem
> > > Radius r=2. Da hier [mm]\le[/mm] steht, bekommst du somit also
> eine
> > > Kreisscheibe.
> > >
> > Halt mal, r muss doch 4 betragen und nicht 2

>

> Hallo,

>

> falls Du von der Menge
> C:= [mm]\{(x,y) \in \IR^{2} | x^{2}+y^{2}\le 4^{2} \}[/mm]
> redest,
> stimmt das.

>

> LG Angela

Ja, da muss ich mich entschuldigen. Ich hatte das Quadrat an der 4 übersehen.


Gruß, Diophant

Bezug
                                        
Bezug
Skizzieren von Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:34 So 24.11.2013
Autor: arenas

wieso ist r=2, ist es nict 4? , weil oben steht das [mm] x^2+y^2<4^2 [/mm] und wegen [mm] 4^2 [/mm] ist r=4 ???

Bezug
                                                
Bezug
Skizzieren von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:48 So 24.11.2013
Autor: Diophant

Hallo und

[willkommenmr]

> wieso ist r=2, ist es nict 4? , weil oben steht das
> [mm]x^2+y^2<4^2[/mm] und wegen [mm]4^2[/mm] ist r=4 ???

Wie ich direkt im Beitrag oberhalb deiner Frage geschrieben habe: ich hatte das Quadrat an der 4 übersehen, also ist hier natürlich r=4.

Gruß, Diopahnt

Bezug
                                                        
Bezug
Skizzieren von Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:53 So 24.11.2013
Autor: arenas

entschuldigung, ich habe es nicht gesehn :D

Bezug
                                                                
Bezug
Skizzieren von Mengen: Skizzieren von Punkten in R^2
Status: (Frage) beantwortet Status 
Datum: 11:59 So 24.11.2013
Autor: arenas

Wie skizziert man [mm] x^2y^2<1 [/mm] und [mm] x^2-y^2<1, [/mm] und wie erkennt uberhaupt man die geometrische form von solche ungleichungen ?? Danke im voraus
LG

Bezug
                                                                        
Bezug
Skizzieren von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:14 So 24.11.2013
Autor: Diophant

Hallo,

> Wie skizziert man [mm]x^2y^2<1[/mm] und [mm]x^2-y^2<1,[/mm] und wie erkennt
> uberhaupt man die geometrische form von solche
> ungleichungen ?? Danke im voraus
> LG

Wenn man an Stelle der Ungleichheit ein Gleichheitszeichen setzt, bekommt man die Ränder der Mengen. Jetzt kann man versuchen, diese Gleichungen nach y aufzulösen, wobei man in deinen beiden Beispielen jeweils eine Fallunterscheidung machen muss. Und dann muss man halt auch ein wenig denken beid er Sache, denn nun gilt es zu entscheiden, auf welcher Seite der Berandungskurve denn die Menge jetzt eigentlich liegt.

Bei deinen Fällen bekommst du die Kruvengleichungen

[mm] y^2=\bruch{1}{x^2} [/mm] bzw.

[mm] y^2=x^2-1 [/mm]

Wenn man jetzt durch Radizieren unter Beachtung der notwendigen Fallunterscheidung der Vorzeichen nach y auflöst, bekommt man im ersten Fall zwei, im zweiten Fall eine Hyperbel als Randkurve:

[mm] y^2=\bruch{1}{x^2} \Rightarrow [/mm]

[mm] K_1: y=\bruch{1}{x} [/mm] ; [mm] K_2: y=-\bruch{1}{x} [/mm]

und im zweiten Fall ist es günstig zu wissen, dass durch

[mm] \bruch{x^2}{a^2}-\bruch{y^2}{b^2}=1 [/mm]

eine Hyperbel beschrieben wird, deren Nebenachse die x-Achse ist.


Gruß, Diophant

 

Bezug
                                                                                
Bezug
Skizzieren von Mengen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:52 So 24.11.2013
Autor: arenas

Danke sehr, aber es zu skizzieren soll ich desselbe mit x machen( nach x lösen) und dann bekomme ich K1,K2,K3,K4. Und bei hyperbel soll ich für a und b 1 nehmen um asymptoten zu kriegen oder ???  

Bezug
                                                                                        
Bezug
Skizzieren von Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:12 So 24.11.2013
Autor: Diophant

Hallo arenas,

> Danke sehr, aber es zu skizzieren soll ich desselbe mit x
> machen( nach x lösen) und dann bekomme ich K1,K2,K3,K4.
> Und bei hyperbel soll ich für a und b 1 nehmen um
> asymptoten zu kriegen oder ???

Sorry, aber diese Frage kann man nicht verstehen. Ich würde folgendes vorschlagen:

- Suche dir ein geeigntes Beispiel
- Bereite deine Frage gut vor, also überlege dir, was du wissen möchtest und wie du das präzise formulieren kannst
- Starte dann bitte einen neuen Thread mit deiner Frage.

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Axiomatische Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de