www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Sobolevraum
Sobolevraum < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sobolevraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:08 Mi 19.11.2014
Autor: Peter_123

Aufgabe
Für welche n [mm] \in \mathbb{N} [/mm] mit [mm] 1\le [/mm] p < [mm] \infty [/mm] liegt die Funktion [mm] max\{0,1-x^{2}\} [/mm] im Sobolevraum [mm] W^{n,p}(\mathbb{R}) [/mm]

Hallo,

und noch eine Frage :

Ich muss ja hier mal schauen ob die Funktion überhaupt in [mm] L^{p}(\mathbb{R}) [/mm] liegt ? dann bis zu welchem n die schwachen Ableitungen existieren und dann nochmal , ob diese wieder in [mm] L^{p} [/mm] liegen oder habe ich da bei der Definition eines Sobolevraumes was falsch verstanden?



Gruß

Peter

        
Bezug
Sobolevraum: Antwort
Status: (Antwort) fertig Status 
Datum: 13:32 Mi 19.11.2014
Autor: fred97


> Für welche n [mm]\in \mathbb{N}[/mm] mit [mm]1\le[/mm] p < [mm]\infty[/mm] liegt die
> Funktion [mm]max\{0,1-x^{2}\}[/mm] im Sobolevraum
> [mm]W^{n,p}(\mathbb{R})[/mm]
>  Hallo,
>  
> und noch eine Frage :
>  
> Ich muss ja hier mal schauen ob die Funktion überhaupt in
> [mm]L^{p}(\mathbb{R})[/mm] liegt ? dann bis zu welchem n die
> schwachen Ableitungen existieren und dann nochmal , ob
> diese wieder in [mm]L^{p}[/mm] liegen oder habe ich da bei der
> Definition eines Sobolevraumes was falsch verstanden?

Nein. Du hast alles richtig verstanden

FRED

>  
>
>
> Gruß
>
> Peter  


Bezug
        
Bezug
Sobolevraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:33 Mi 19.11.2014
Autor: Peter_123

Hallo,


Danke für deine Antwort.

Also wenn ich f ableite , dann sollte ja (sofern diese Ableitung existiert) diese mit der schwachen Ableitung fast überall übereinstimmen ?

Also leite ich f normal ab

[mm] f'(x)=\begin{cases} -2x, & x\in (-1,1) \\ 0, & sonst \end{cases} [/mm]

f''(x) = [mm] \begin{cases} -2, & x\in (-1,1) \\ 0, & sonst \end{cases} [/mm]

also existieren mal die schwachen Ableitungen bis zur Ordnung n=2.


Passt das bis hier?


Lg Peter



Bezug
                
Bezug
Sobolevraum: Antwort
Status: (Antwort) fertig Status 
Datum: 23:15 Mi 19.11.2014
Autor: andyv

Hallo,

woraus folgerst du denn die Existenz der schwachen Ableitungen bis Ordnung 2? Die Funktion f ist nicht stark differenzierbar und ich behaupte, dass f' (als schwache Ableitung von f) nicht schwach differenzierbar ist. f dagegen ist schwach differenzierbar. Das sollte man aber zeigen.

Liebe Grüße

Bezug
                        
Bezug
Sobolevraum: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:32 Do 20.11.2014
Autor: Peter_123


> Hallo,
>  
> woraus folgerst du denn die Existenz der schwachen
> Ableitungen bis Ordnung 2? Die Funktion f ist nicht stark
> differenzierbar und ich behaupte, dass f' (als schwache
> Ableitung von f) nicht schwach differenzierbar ist. f
> dagegen ist schwach differenzierbar. Das sollte man aber
> zeigen.
>  
> Liebe Grüße

Hmm , also ich seh mir mal an ob die Funktion f - Lip-stetig ist , falls ja so ist sie auch absolut stetig und es existiert eine schwache Ableitung?

f ist L-stetig.

also:

$ [mm] f'(x)=\begin{cases} -2x, & x\in (-1,1) \\ 0, & sonst \end{cases} [/mm] $

aber f' ist es nicht mehr.

Also existiert nur die Schwache Ableitung für n = 1 ?


Lg

Peter

Bezug
                                
Bezug
Sobolevraum: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Sa 22.11.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de