www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Spektralmaß
Spektralmaß < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spektralmaß: Eigenschaft
Status: (Frage) beantwortet Status 
Datum: 13:00 Mi 26.11.2008
Autor: SorcererBln

Aufgabe
Sei $H$ ein Hilbertraum. Sei [mm] $\sum$ [/mm] eine [mm] $\sigma$-Algebra [/mm] über einer Menge [mm] $\Omega$ [/mm] und [mm] $E:\sum \to [/mm] L(H)$ ein Spektralmaß, also

a) Für jede Menge [mm] $A\in \Sum$ [/mm] ist [mm] $E_A:=E(A)$ [/mm] eine Orthogonalprojektion

b) [mm] $E_\emptyset=0, E_\Omega=Id$ [/mm]

c) Für paarweise disjunkte [mm] $A_1,A_2,... \in \sum$ [/mm] gilt

[mm] $\sum^\infty_{i=1}E(A_i)x=E(\bigcup_i A_i)x$ [/mm] für alle [mm] $x\in [/mm] H$

Nun soll nach Werner FA ganz automatische die folgende Eigenschaft folgen:

[mm] $E(A)E(B)=E(B)A(A)=E(A\cap [/mm] B)$

bzw. $E(A)E(B)=0$, wenn [mm] $A\cap B=\emptyset$. [/mm]

Leider habe ich nun eine ganze Seite vollgeschrieben und finde einfach keinen einfachen Weg. Vielleicht gibt es hier jemanden, der das Problem schon kennt?

        
Bezug
Spektralmaß: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 Mi 26.11.2008
Autor: fred97

Das Problem kenne ich gut.

Du sollst zeigen:  (*)    $ [mm] E(A)E(B)=E(B)E(A)=E(A\cap [/mm] B) $

Versuche mal folgendes zu zeigen (das kann man immer mal wieder brauchen)

SATZ: Seien P und Q Orthogonalprojektionen. Dann sind äquivalent:
(1)  PQ = QP = P
(2) P(H) [mm] \subseteq [/mm] Q(H)
(3) kern(Q) [mm] \subseteq [/mm] kern(P)


Wenn Du das hast , sollte (*) kein Problem sein.

FRED

Bezug
                
Bezug
Spektralmaß: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:09 Mi 26.11.2008
Autor: SorcererBln

Ok. Den Satz habe ich mir bewiesen. Danke dir :-)

Ich wähle nun [mm] $P=E(A\cap [/mm] B)$ und $Q=E(X)$, $X=A,B$. Dann folgt mit dem Satz

[mm] $E(A\cap B)E(X)=E(X)E(A\cap B)=E(A\cap [/mm] B)$, $X=A,B$.

Daraus könnte man folgern:

[mm] $E(A\cap B)E(B)E(A)=E(A)E(B)E(A\cap B)=E(A\cap [/mm] B)$,

aber ich sehe noch nicht, was das jetzt bringt? Ich habe auch noch nicht wirklich die Eigenschaften des Spektralmaßes benutzt! Hast du noch einen Tipp? Bin ich auf der richtigen Spur?

Frank

Bezug
                        
Bezug
Spektralmaß: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:58 Do 27.11.2008
Autor: SorcererBln

Ich könnte auch folgendes zeigen:

[mm] $I=E(A)+E(B)+E(A^c\cap B^c)$, [/mm]

falls $A$ und $B$ disjunkt, d.h. ich will ersteinmal [mm] $E_AE_B=0$ [/mm] zeigen.

Anwenden von $E(A)$ ergibt (beachte $E(X)E(X)=E(X)$

[mm] $E(A)E(B)+E(A)E(A^c\cap B^c)=0$ [/mm]

Ich muss also zeigen: [mm] $E(A)E(A^c\cap B^c)=0$. [/mm] Wie mache ich das mit dem Tipp von Dr. Fred97?




Bezug
                                
Bezug
Spektralmaß: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:26 Sa 29.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
Spektralmaß: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:24 Fr 28.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de