www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Spiegelung eines Punktes
Spiegelung eines Punktes < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spiegelung eines Punktes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:27 Mo 20.12.2010
Autor: KylexD

Aufgabe
Zeige,dass man den Punkt P*(-2,11/-0,22/-0,78) erhält, wenn man den Punkt P (3/-2/1) an der Ebene F:x1-2x2+2x3=5 spiegelt.

Ich weiß einfach nicht, wie man diese Aufgabe rechnet. Wir haben sowas ganz sicher noch nie im Unterricht gemacht und in der Klausur hatte auch praktisch keiner diese Aufgabe, was meine Note ein bisschen runtergezogen hat^^ Ich hoffe mir kann jemand helfen, ich muss wissen, wie man diese Aufgabe löst^^

        
Bezug
Spiegelung eines Punktes: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 Mo 20.12.2010
Autor: schachuzipus

Hallo KylexD,

> Zeige,dass man den Punkt P*(-2,11/-0,22/-0,78) erhält,
> wenn man den Punkt P (3/-2/1) an der Ebene F:x1-2x2+2x3=5
> spiegelt.
> Ich weiß einfach nicht, wie man diese Aufgabe rechnet.
> Wir haben sowas ganz sicher noch nie im Unterricht gemacht

Das ist schwer vorstellbar ...

> und in der Klausur hatte auch praktisch keiner diese
> Aufgabe, was meine Note ein bisschen runtergezogen hat^^
> Ich hoffe mir kann jemand helfen, ich muss wissen, wie man
> diese Aufgabe löst^^

Berechne mal das Lot (die Lotgerade) vom Punkt [mm]P[/mm] auf die Ebene [mm]F[/mm]

Einen Richtungsvektor für die Lotgerade hast du ja gegeben (etwas versteckt, aber eigentlich deutlich sichtbar ...)

Dann berechne den Durchstoßpunk [mm]D[/mm] von Lotgerade und Ebene.

Und den Abstand zweier Punkte kannst du berechnen.

[mm]P^{\star}[/mm] liegt auch auf (derselben) Lotgeraden und hat denselben Abstand von [mm]D[/mm] wie [mm]P[/mm].

Geht's damit?

Über die Hessesche Normalform sollte es auch gehen. Hattet ihr die?


Gruß

schachuzipus


Bezug
                
Bezug
Spiegelung eines Punktes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:43 Mo 20.12.2010
Autor: KylexD

Also die Hessesche Normalenform hatten wir. Wäre das denn so einfacher zu berechnen?

Bezug
                        
Bezug
Spiegelung eines Punktes: Antwort
Status: (Antwort) fertig Status 
Datum: 00:35 Di 21.12.2010
Autor: MathePower

Hallo KylexD,

> Also die Hessesche Normalenform hatten wir. Wäre das denn
> so einfacher zu berechnen?


Ja, das ist der selbe Rechenweg.


Gruss
MathePower

Bezug
                
Bezug
Spiegelung eines Punktes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:24 Mo 20.12.2010
Autor: KylexD

Also ich habe schonmal die Lotgerade aufgestellt [mm] g:\begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}+r\begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} [/mm] dann hab ich für r aber [mm] \left( -\bruch {4}{9} \right) [/mm] und dann für f nur Brüche total krumme Zahlen^^  Man muss ja r in g einsetzen um den Durchstoßpunkt zu berechen dann hab ich 2 2/9, -1 1/9 und [mm] \left( \bruch{1}{9} \right) [/mm] raus.






Bezug
        
Bezug
Spiegelung eines Punktes: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 Mo 20.12.2010
Autor: abakus


> Zeige,dass man den Punkt P*(-2,11/-0,22/-0,78) erhält,
> wenn man den Punkt P (3/-2/1) an der Ebene F:x1-2x2+2x3=5
> spiegelt.
>  Ich weiß einfach nicht, wie man diese Aufgabe rechnet.

Hallo,
aufwändiger wäre es, wenn du den Spiegelpunkt selbst ermitteln müsstest. Aber so ist es doch ganz simpel:
1) Zeige, dass PP* senkrecht auf der Ebene steht (Stichwort: Normalenvektor)
2) Zeige, dass der Mittelpunkt der Strecke PP* ein Punkt in der gegebenen Ebene ist.
Gruß Abakus

> Wir haben sowas ganz sicher noch nie im Unterricht gemacht
> und in der Klausur hatte auch praktisch keiner diese
> Aufgabe, was meine Note ein bisschen runtergezogen hat^^
> Ich hoffe mir kann jemand helfen, ich muss wissen, wie man
> diese Aufgabe löst^^


Bezug
                
Bezug
Spiegelung eines Punktes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:25 Mo 20.12.2010
Autor: KylexD

Ist das nicht da, wo die Gerade die Ebene schneidet? Wie rechnet man das denn ich verstehe es gerade nicht^^

Bezug
                        
Bezug
Spiegelung eines Punktes: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 Mo 20.12.2010
Autor: leduart

Hallo
ne Strecke schneidet die Ebene, da wo ihre Gerade die Ebene schneidet? deshalb versteh ich die Frage nicht. Geraden mit ebenen geschnitten kannst du doch?
Gruss leduart


Bezug
                                
Bezug
Spiegelung eines Punktes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:48 Mo 20.12.2010
Autor: KylexD

Ich hab ja schon eine Gerade aufgestellt und den Schnittpunkt berechnet aber ich hab da so komische Werte raus, die ich da vorhin bereits gepostet hab. Aber ich weiß nicht wie ich dann weiter machen muss wenn ich PF berechnet habe.

Bezug
                                        
Bezug
Spiegelung eines Punktes: Antwort
Status: (Antwort) fertig Status 
Datum: 00:42 Di 21.12.2010
Autor: MathePower

Hallo KylexD,

> Ich hab ja schon eine Gerade aufgestellt und den
> Schnittpunkt berechnet aber ich hab da so komische Werte
> raus, die ich da vorhin bereits gepostet hab. Aber ich
> weiß nicht wie ich dann weiter machen muss wenn ich PF
> berechnet habe.


Der errechnete Durchstoßpunkt in dieser Mitteilung stimmt nicht ganz:

[mm]\pmat{\red{\bruch{23}{9}} \\ -\bruch{10}{9} \\ \bruch{1}{9}[/mm]

Berechne jetzt den Differenzvektor des Punktes P zu diesen Durchstoßpunkt.


Gruss
MathePower

Bezug
        
Bezug
Spiegelung eines Punktes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:51 Di 21.12.2010
Autor: Calli


> Zeige,dass man den Punkt P*(-2,11/-0,22/-0,78) erhält,
> wenn man den Punkt P (3/-2/1) an der Ebene F:x1-2x2+2x3=5
> spiegelt.

Hey !
Das läßt sich nicht zeigen, da
[mm] $P^{\*} =\begin{pmatrix} -2,11\\ -0,22\\-0,78 \end{pmatrix}$ [/mm] kein Spiegelpunkt zu $P [mm] =\begin{pmatrix} 3\\ -2\\1\end{pmatrix}$ [/mm] ist !

Der Spiegelpunkt zu P an der Ebene F ist
[mm] $P^{\*} \approx \begin{pmatrix} 2,11\\ -0,22\\-0,78 \end{pmatrix}$ [/mm]

Ciao Calli

Tip: Der Spiegelpunkt hat die Koordinaten mit 2r.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de