www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Spielplan mit für Skat, Halma
Spielplan mit für Skat, Halma < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spielplan mit für Skat, Halma: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:46 Do 25.01.2007
Autor: Gibraldo

Aufgabe
Ich bin kein Mathematiker aber ich entwickle Spielpläne. Ich kenne die Logik um z.B. einen Ligaspielplan "Jeder gg. Jeden" mit beliebig vielen Mannschaften zu erstellen, sowie wie in der Fussball-Bundesliga die 18 Mannschaften sich an 17.Spieltagen paaren.

Nun habe ich aber an ein weit kniffligeres Problem herangewagt, an dem ich mit meinen Kenntnissen an Grenzen stoße. Es geht um eine Erweteiterung des oben beschriebenen.

Wie würde man einen Liga-Spielplan generigeren können bei dem nicht 2, sondern 3 Kontrahenten in einer "Begegnung" aufeinander treffen, z.b.
bei Skat oder Halma. Es soll dabei auch hier "Jeder gg. jeden" einmal antreten, aber eben exakt nur einmal.

Für eine 9er Liga habe ich dies ohne Probleme durch "Probieren" hinbekommen.

Es würde z.B. wie folgt aussehen:

1.Spieltag:
Spiel1: 1-2-3
Spiel2: 4-5-6
Spiel3: 7-8-9

2.Spieltag:
1-4-7
2-5-9
3-6-8

3.Spieltag
1-5-8
2-6-7
3-4-9

4.Spieltag:
1-6-9
2-4-8
3-5-7

Wie gesagt: Habe herumprobiert. Nun will ich selbiges für eine 12er, 15er,
18er Liga machen, beiße mir hier aber die Zähne aus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Gibt es dafür eine Systemmatik, wie so ein Spielplan erstellt werden kann?


        
Bezug
Spielplan mit für Skat, Halma: Antwort
Status: (Antwort) fertig Status 
Datum: 14:26 Fr 26.01.2007
Autor: mathiash

Moin und hallo,

ich fang einfach mal an:

wir haben 3n Spieler und fragen mal nach einem Spielplan in Deinem Sinne, so dass an jedem Spieltag alle spielen.

Da pro Partie jeder mit zwei neuen Spielern spielt, muss dafür notwendigerweise 3n-1 gerade sein.

Bezeichnen wir die Spieler mit [mm] 0,\ldots [/mm] 3n-1,

so bilden wir am ersten Tag die Partien

[mm] p_{1,j}=(3j,3j+1,3j+2),\:\: 0\leq j\leq [/mm] n-1

Stellen wir uns mal vor, dass  Spieler 3j stets in Partie j spielt, und die Spieler 3j+1, 3j+2 wechseln die Partien, und zwar geht Spieler 3j+1 immer eine Partie weiter, Spieler 3j+2 immer zwei Partien weiter - wobei wir uns die Partien 1, [mm] \ldots [/mm] n
zyklisch angeordnet denken.

Wann klappt das ? Nun, die 3j+1 werden nacheinander die Spieler 3j, 3j+3, 3j+6 usw besuchen, die Spieler 3j+2 die Spieler 3j, 3j+6, 3j+12 usw., und da 3n-1 gerade ist, muss n ungerade sein, so dass in n Schritten die Spieler 3j+2 tatsächlich alle Spieler 3j besuchen. Zu kláren bleibt, ob sich zwei Spieler 3j+1 , 3l+2 zweimal begegnen - wenn nicht, sind wir fertig.

Ich denke, vermöge Umnumerierung kann man argumentieren, dass es reicht, zu zeigen, dass die Spieler 1 und 2 sich nicht mehr begegnen (ausser in der ersten Partie).

Fallso doch, so müsste es also ein [mm] t\in \{1,\ldots n-2\} [/mm] geben mit

[mm] t\equiv 2t\mod [/mm] 3n, also [mm] 0\equiv t\mod [/mm] 3n,

und das sollte nicht der Fall sein, oder ?

Gruss,

Mathias







Bezug
                
Bezug
Spielplan mit für Skat, Halma: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:42 Fr 26.01.2007
Autor: Gibraldo

Puh,

ich sagte doch, ich bin mathematisch unbegabt, aber vielen dank, dass du Dir die mühe gemacht hast.

könntest du deinen algorithmus evtl an einer "15 Spieler" liga erläutern

Wenn der 1. Spieltag so aussieht:

1-2-3
4-5-6
7-8-9
10-11-12
13-14-15

wie dann der zweite?
und der dritte?

Wäre echt hilfreich :-)



Bezug
                        
Bezug
Spielplan mit für Skat, Halma: Antwort
Status: (Antwort) fertig Status 
Datum: 10:46 Mi 14.02.2007
Autor: M.Rex

Hallo

Ich versuche es mal.

Also

erster Spieltag:

1-2-3
4-5-6
7-8-9
10-11-12
13-14-15

Jetzt rutscht der dritte genau 2 Plätze weiter, der 2 einen Platz, und der erste bleibt sitzen:

Also: Zweiter Spieltag:

1-14-12
4-2-15
7-5-3
10-8-6
13-11-9

Und der Dritte Spieltag:

1-11-6
4-14-9
7-2-12
10-5-15
13-8-3

usw...

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de