www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Spitze eines Tetraeder im Raum
Spitze eines Tetraeder im Raum < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spitze eines Tetraeder im Raum: Lösungsweg
Status: (Frage) beantwortet Status 
Datum: 16:51 Mo 07.02.2011
Autor: utseb

Aufgabe
Bitte Lösungsweg detailliert erklären.

Tetraeder: A(2/6/0); B(6/6/4); C(4/0/-1)
der Schwerpunkt ist nach meinen Rechnungen S(4/4/1)
und der Normalvektor der Ebene ist( 2|1|-2) bitte nochmal nachrechnen vllt ist es falsch. wie kommt man mit der Höhe h=6 auf die zwei Spitzen des Tetraeders? Ich habe schon probiert mit dem Betrag von dem Normalvektor + Schwerpunkt(der Schwerpunkt ist der Fußpunkt der Höhe)
komme aber auf das falsche Ergebnis die Lösung sollten D1:(8/6-3) und D2:(0/2/5) sein

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Spitze eines Tetraeder im Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Mo 07.02.2011
Autor: abakus


> Bitte Lösungsweg detailliert erklären.
>  Tetraeder: A(2/6/0); B(6/6/4); C(4/0/-1)
>  der Schwerpunkt ist nach meinen Rechnungen S(4/4/1)
>  und der Normalvektor der Ebene ist( 2|1|-2) bitte nochmal
> nachrechnen vllt ist es falsch. wie kommt man mit der Höhe
> h=6 auf die zwei Spitzen des Tetraeders?

Hallo, der Normalenvektor stimmt. Der Betrag des Normalenvektors ist dann [mm] \wurzel{2^2+1^2+(-2)^2}=\wurzel{9}=3 [/mm]
Da, wie du schreibst, die Pyramide nicht nur 3, sondern 6 Einheiten hoch sein soll, musst du vom Schwerpunkt aus 2* Normalenvektor (bzw. -2 mal) antragen.
Gruß Abakus

>  Ich habe schon
> probiert mit dem Betrag von dem Normalvektor +
> Schwerpunkt(der Schwerpunkt ist der Fußpunkt der Höhe)
>  komme aber auf das falsche Ergebnis die Lösung sollten
> D1:(8/6-3) und D2:(0/2/5) sein
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  


Bezug
                
Bezug
Spitze eines Tetraeder im Raum: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:17 Mo 07.02.2011
Autor: utseb

Aufgabe
Normalvektor antragen

wie trage ich den Normalvektor an den Fußpunkt der Höhe an und wie multipliziert man den Normalvektor mal 2?

Bezug
                        
Bezug
Spitze eines Tetraeder im Raum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:42 Mo 07.02.2011
Autor: schachuzipus

Hallo,

kein "Hallo", kein "Danke für die Antwort", kein freundliches Wort.

Und nur Forderungen stellen ...

Das erhöht ganz bestimmt die Motivation der Antwortgeber ...


Unglaublich!

Gruß

schachuzipus


Bezug
                        
Bezug
Spitze eines Tetraeder im Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 06:09 Di 08.02.2011
Autor: angela.h.b.

Hallo,

[willkommenmr].

Vielleicht liest Du Dir einmal die Forenregeln durch.
Ein kleines "Hallo" und "Danke" ist nie ein Fehler...

> Normalvektor antragen
>  wie trage ich den Normalvektor an den Fußpunkt der Höhe
> an und wie multipliziert man den Normalvektor mal 2?

Oh weh!
Man multipliziert einen Vektor mit 2, indem man jede Komponente mit 2 multipliziert:

[mm] 2*\vektor{1\\2\\3}=\vektor{2\\4\\6}. [/mm]

Wenn Du den richtigen Normalenvektor zum Ortsvektor des Fußpunktes addierst, bekommst Du den Ortsvektor der Spitze.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de