www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abiturvorbereitung" - Stabile Verteilung und Zyklen
Stabile Verteilung und Zyklen < Abivorbereitung < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stabile Verteilung und Zyklen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:15 Di 11.03.2014
Autor: FrageFrage

Aufgabe
Berechnen Sie die stabile Verteilung einer Populationsmatrix.

Es gibt keine richtige Aufgabe, da sich meine Frage auf  ein allgemeines Beispiel unseres Unterrichts bezieht. Sorry!

Folgenden Lösungsansatz hat mein Lehrer uns beigebracht:

Eine Populationsmatrix M kann man auf einen Zyklus und eine stabile Verteilung überprüfen .

Ein Zyklus erschließt sich durch Ausprobieren von Potenzen von M [mm] (M^2 [/mm] usw.). Man kommt im Beispiel zu dem Ergebnis, dass nach 4 Zeitschritten sich die Populationsmatrix wiederholt -> [mm] M^4=E [/mm] (E=Einheitsmatrix) Dieser Zyklus wurde vom Lehrer als stabile Verteilung bezeichnet.

Außerdem kommt man zu dem Ergebnis, dass es eine (andere?) stabile Verteilung gibt:
M * Fixvektor = Fixvektor | ersetze x1 des Fixvektors mit dem Wert 1
Das um eine Variable reduzierte GS liefert im Beispiel: Fixvektor = k * (20 4 2 1)
Dieser Fixvektor wurde ebenfalls als stabil bezeichnet.

Meine Frage ist nun, wie diese beiden Ergebnisse zusammenhängen. Wie kann es sein, dass es trotz der zyklischen Wiederholung eine langfristige stabile Verteilung (gemeint ist der Fixvektor) gibt?

Danke im voraus.

PS: Ihr seid meine letzte Hoffnung für die Klausur übermorgen. Andere Foren konnten mir nicht helfen.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: [http://www.uni-protokolle.de/foren/viewt/305603,0.html?sid=de626585b6f40044967c0afa6236e772 http://www.matheboard.de/thread.php?threadid=537986]

        
Bezug
Stabile Verteilung und Zyklen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 Mi 12.03.2014
Autor: leduart

Hallo
1. E*x=x ist dir klar, wenn E die Einheitsmatrix ist, wenn du also irgendeinen Bevölkerungsvektor x1 hast die erste naxhfolgegeneration ausrechnest hast du eine neue Bevülkerung x2=Mx1 , dann die naächste x3=Mx2=M^2x1 . dann [mm] x:_4=M^3_x_1 [/mm] und [mm] x5=M^4*x_1=x_1 [/mm] nach vier Generationen hast du also wieder die Ausgangspopulation und dieser Zyklus geht immer weiter, ist also stabil  (keine Explosion, kein Aussterben.
Wenn ich aber einen besonderen Ausgangsvektor [mm] x_e [/mm] nehme für den gilt, [mm] M*x_e=x_e [/mm] dann ist [mm] x_e [/mm] Eigenvektor zum Eigenwert 1, dieseer besondere Bevölkerungsvektor bleibt also generation für Generation erhalten.
Wenn man nicht mit einem Eigenvektor anfängt, ändert sich die Population 3 Generationen lang und erreicht dann erst wieder den Anfangszustand.
einen Eigenvektor mit Eigenwert 1 kann man haben, wenn [mm] M^n=E [/mm] ist, oder auch wenn es das nicht gibt.
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de