www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Regelungstechnik" - Stabilität der Systemmatrix A
Stabilität der Systemmatrix A < Regelungstechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stabilität der Systemmatrix A: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 Mi 04.03.2009
Autor: JensemannDU

Aufgabe
Untersuchen Sie das angegebene System auf seine Stabilität:
[mm] A=\pmat{ -3 & 0 & 5 \\ 1 & 3 & -5 \\ -1 & 0 & 3 }; B=\pmat{ 0 \\ 1 \\ 1 }; C=\pmat{ 1 & 0 & 0 }. [/mm]
Handelt es sich um ein SISO oder MIMO System?

Das prinzipielle Vorgehen zur Bestimmung ist mir bekannt:

[mm] det(\lambda [/mm] * E - A) = 0, (danach weiter mit dem Hurwitz-Kriterium)

was bisher auch immer richtig schien, nun entdecke ich aber in der Musterlösung zur oben genannten Aufgabe und in zwei anderen, die Angabe

det(A - [mm] \lambda [/mm] * E) = 0 (danach weiter mit dem Hurwitz-Kriterium)

Warum wird das hier umgekehrt, bzw. woran erkenne ich, wann ich wie rechnen muss.

Vielen Dank für die Bemühungen!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Stabilität der Systemmatrix A: gehopst wie gesprungen
Status: (Antwort) fertig Status 
Datum: 13:47 Mi 04.03.2009
Autor: Herby

Hallo JensemannDU,

und herzlich [willkommenvh]

> Untersuchen Sie das angegebene System auf seine
> Stabilität:
>  [mm]A=\pmat{ -3 & 0 & 5 \\ 1 & 3 & -5 \\ -1 & 0 & 3 }; B=\pmat{ 0 \\ 1 \\ 1 }; C=\pmat{ 1 & 0 & 0 }.[/mm]
> Handelt es sich um ein SISO oder MIMO System?
>  Das prinzipielle Vorgehen zur Bestimmung ist mir bekannt:
>  
> [mm]det(\lambda[/mm] * E - A) = 0, (danach weiter mit dem
> Hurwitz-Kriterium)
>  
> was bisher auch immer richtig schien, nun entdecke ich aber
> in der Musterlösung zur oben genannten Aufgabe und in zwei
> anderen, die Angabe
>
> det(A - [mm]\lambda[/mm] * E) = 0 (danach weiter mit dem
> Hurwitz-Kriterium)
>  
> Warum wird das hier umgekehrt, bzw. woran erkenne ich, wann
> ich wie rechnen muss.

es ist: [mm] det(A-\lambda*E)=det(\lambda*E-A) [/mm]

Probier' es aus :-)


Liebe Grüße
Herby

Bezug
                
Bezug
Stabilität der Systemmatrix A: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:57 Mi 04.03.2009
Autor: JensemannDU

Peinlich, peinlich, hätte mir ja auch so auffallen können/müssen. Jetzt wo ich es mal so ausgerechnet habe kam ich - welch Wunder - bei beiden zum gleichen Ergebnis. :-)

Vielen Dank für die wirklich sehr schnelle Antwort!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de