www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Stammfunktion
Stammfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 Mi 27.02.2008
Autor: krisu112

Hallo,

mir fehlt der entscheidende Ansatz bei einer Aufgabe:

[mm] \integral_{a}^{b}{\bruch{2}{(sinx)^2} -7e^{3*x} dx} [/mm]


Die Integrale habe ich getrennt geschrieben laut dem Integrationsgesetz, die 2 als Faktor bzw. die -1 vorgezogen:

[mm] 2*\integral_{a}^{b}{\bruch{1}{(sinx)^2}dx} [/mm] - [mm] \integral_{a}^{b}{7e^{3*x} dx} [/mm]

Bei der Integration des 2. Terms habe ich keine Probleme nur die [mm] \bruch{2}{(sinx)^2} [/mm] machen mir Probleme, hier finde ich keinen passenden Ansatz bzw. eine passende Substitution.


Vielen Dank für eure Hilfe im Vorraus

mfg krisu

        
Bezug
Stammfunktion: Tipp
Status: (Antwort) fertig Status 
Datum: 13:39 Mi 27.02.2008
Autor: Roadrunner

Hallo krisu!


Ersetze im Zähler: $1 \ = \ [mm] \sin^2(x)+\cos^2(x)$ [/mm] .


Gruß vom
Roadrunner


Bezug
                
Bezug
Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:00 Mi 27.02.2008
Autor: krisu112

Hallo,

das hab ich auch schon versucht, bin da auch hängen geblieben, könntest du mir vllt die weitere Vereinfachung erklären???

Danke im Vorraus

mfg

Bezug
                        
Bezug
Stammfunktion: weitere Schritte
Status: (Antwort) fertig Status 
Datum: 15:28 Mi 27.02.2008
Autor: Roadrunner

Hallo krisu!


[mm] $$\bruch{1}{\sin^2(x)} [/mm] \ = \ [mm] \bruch{\sin^2(x)+\cos^2(x)}{\sin^2(x)} [/mm] \ = \ [mm] \bruch{\sin^2(x)}{\sin^2(x)}+\bruch{\cos^2(x)}{\sin^2(x)} [/mm] \ = \ [mm] 1+\left[\bruch{\cos(x)}{\sin(x)}\right]^2 [/mm] \ = \ [mm] 1+\cot^2(x)$$ [/mm]


Noch schneller bist Du, wenn Du Dir mal die Ableitung zu [mm] $\cot(x)$ [/mm] ansiehst.


Gruß vom
Roadrunner


Bezug
                                
Bezug
Stammfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:55 Mi 27.02.2008
Autor: krisu112

Super, vielen Dank Roadrunner für deine schnelle Hilfe

mfg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de