www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Stammfunktion
Stammfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:08 So 30.03.2008
Autor: puldi

Hallo,

ich soll eine Stammfunktion zu:

x * |x| bilden

Ic dachte so:

-x², für x < 0

x², für x > 0

Also:

-1/3 x³, für x < 0

1/3x³, für x > 0

Also

1/3 sgn(x³)

Stimmt das so?

Bitte verbessert mich, danke!

        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 So 30.03.2008
Autor: abakus


> Hallo,
>  
> ich soll eine Stammfunktion zu:
>  
> x * |x| bilden
>  
> Ic dachte so:
>  
> -x², für x < 0
>  
> x², für x > 0

Vergiss den Fall x=0 nicht. Der muss in einen deiner beiden Fälle mit rein, z.B. so:
x * |x|=x²  für x [mm] \ge [/mm] 0


>  
> Also:
>  
> -1/3 x³, für x < 0
>  
> 1/3x³, für x > 0

(wieder [mm] x\ge [/mm] 0)

>  
> Also
>  
> 1/3 sgn(x³)
>  
> Stimmt das so?

Nein. Du hast die Signumfunktion mit der Betragsfunktion verwechselt.
F(x)=1/3 abs(x³) = abs(1/3 [mm] x^3) [/mm] bzw. mit Betragsstrichen
F(x)=1/3 |x³| = |1/3 [mm] x^3| [/mm]
Viele Grüe
Abakus



>  
> Bitte verbessert mich, danke!


Bezug
                
Bezug
Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 So 30.03.2008
Autor: puldi

Hallo,

stimmt, danke dir.

Kann man als Ergebnis F(x)=1/3 |x³| stehen lassen oder muss im endergebnis der Betrag um alles?

Danke!

Bezug
                        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 So 30.03.2008
Autor: abakus


> Hallo,
>  
> stimmt, danke dir.
>  
> Kann man als Ergebnis F(x)=1/3 |x³| stehen lassen oder muss
> im endergebnis der Betrag um alles?

Die beiden Schreibweisen sind gleichwertig.

>  
> Danke!


Bezug
                                
Bezug
Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:40 So 30.03.2008
Autor: puldi

okay, danke!

Noch eine kleine Frage zu signum.
Signum hat ja keine Stammfunktion, aber die Ableitung von Signm ist die Betragsfunktion!?

Bezug
                                        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 So 30.03.2008
Autor: abakus


> okay, danke!
>  
> Noch eine kleine Frage zu signum.
>  Signum hat ja keine Stammfunktion, aber die Ableitung von
> Signm ist die Betragsfunktion!?

Nein. Die Signumfunktion ist wie folgt definiert:
[mm] sgn(x)=\begin{cases} 1, & \mbox{für }x>0 \\ 0, & \mbox{für } x=0 \\ -1, & \mbox{für } x<0\end{cases} [/mm]

Damit ist die Betragsfunktion eine Stammfunktio (nur bei x=0 nicht ableitbar),
und die Ableitung ist 0 (für [mm] x\ne [/mm] 0).



Bezug
                                                
Bezug
Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:54 So 30.03.2008
Autor: puldi

Mmm.. in meinem Buch steht nämlich:

Die Betragsfunktion ist an der Stelle x = 0 nicht diff'bar und kann somit auch keine Stammfunktiuon von der Signumfunktion sein.

Aber das stimmt dann ja nicht, oder?

Kann ich mir folgendes merken?:

|x|' = sign(x)

Eigentlich ja nicht, wegen x=0, oder?

Bezug
                                                        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 So 30.03.2008
Autor: steppenhahn


> |x|' = sign(x)

>Eigentlich ja nicht, wegen x=0, oder?

Nein, das stimmt nicht, genau wegen deiner Begründung.
Man sagt eigentlich

|x|' = [mm] \bruch{|x|}{x} [/mm]

Da stimmt dann insofern, dass es an der Stelle 0 nicht definiert ist. (Was ja auch richtig ist).

Bezug
                                                                
Bezug
Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:30 So 30.03.2008
Autor: puldi

Ist sgn(x) denn $ [mm] \bruch{|x|}{x} [/mm] $

ich dachte immer x / |x| ?

Bezug
                                                                        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:40 So 30.03.2008
Autor: Andi


> Ist sgn(x) denn [mm]\bruch{|x|}{x}[/mm]
>  
> ich dachte immer x / |x| ?

Hallo Puldi,

Die Funktion sgn (signum, lateinisch für "Zeichen") ordnet jeder Zahl ihr Vorzeichen zu.
[mm] sgn(x):= \left\{\begin{matrix} +1 , & \mbox{wenn x > 0 } \\ 0 , & \mbox{wenn x = 0 }\\ -1 , & \mbox{wenn x < 0 } \end{matrix} \right [/mm]

Du siehst jetzt denke ich , dass für [mm] x\not=0 [/mm] gilt:
[mm]sgn(x)=\bruch{|x|}{x}=\bruch{x}{|x|}[/mm]

Viele Grüße,
Andi

Bezug
                                                                                
Bezug
Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:48 So 30.03.2008
Autor: puldi

Das kann man sich ja richtig gut merken. Also einfach in den Zähler odr Nenner Betrag(x) und in den Nenner bzw Zähler andersrum dann x.

Noch mal zusammengefasst:

Wenn ich Betrag(x) ableite erhalte ich sign(x). Bei x = 0 sind beide Funktionen nicht diff'bar.

Und damit ist |x| die Stammfunktion von sign(x).

Und sign kann ich dann wie oben erläutert darstellen.

Stimmen meine Aussagen so, oder muss man das genauer erklären?

Danke euch

Bezug
                                                                                        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:02 So 30.03.2008
Autor: Merle23


> Und damit ist |x| die Stammfunktion von sign(x).

Nein, denn die Signumfunktion ist auf ganz [mm] \IR [/mm] definiert, also müsste eine Stammfunktion auch auf ganz [mm] \IR [/mm] differenzierbar sein.

> Wenn ich Betrag(x) ableite erhalte ich sign(x).

Korrekter: Die Betragsfunktion eingeschränkt auf [mm] \IR \backslash{0} [/mm] abgeleitet ergibt die Signumfunktion eingeschränkt auf [mm] \IR \backslash{0}. [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de