www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Stammfunktion
Stammfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:22 Sa 25.07.2009
Autor: AbraxasRishi

Aufgabe
[mm] \integral{\frac{e^xx^3}{(x+3)^2}dx} [/mm]

Hallo!

Ich komm einfach nicht drauf wie das geht! Habe schon partiellle Integration mit [mm]v'=e^x \quad u=\frac{x^3}{(x+3)^2}[/mm] versucht und mit [mm]u=\frac{1}{(x+3)^2}[/mm] etc. Beide Ansätze führen auf nicht elementar integriebare Ausdrücke. Kann mir bitte jemand einen kleinen Tipp geben?

Gruß

Angelika

        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Sa 25.07.2009
Autor: schachuzipus

Hallo Angelika,

> [mm]\integral{\frac{e^xx^3}{(x+3)^2}dx}[/mm]
>  Hallo!
>  
> Ich komm einfach nicht drauf wie das geht! Habe schon
> partiellle Integration mit [mm]v'=e^x \quad u=\frac{x^3}{(x+3)^2}[/mm]
> versucht und mit [mm]u=\frac{1}{(x+3)^2}[/mm] etc. Beide Ansätze
> führen auf nicht elementar integriebare Ausdrücke. Kann
> mir bitte jemand einen kleinen Tipp geben?

Partielle Integration ist schon genau die richtige Idee.

Mache aber mal zuerst eine Polynomdivision (und PBZ für den "Rest"):

[mm] $x^3:(x+3)^2$, [/mm] also [mm] $x^3:(x^2+6x+9)=x-6+\frac{27}{x+3}-\frac{27}{(x+3)^2}$ [/mm]

Damit bereche mit partieller Integration [mm] $\int{e^x\cdot{}\left(x-6+\frac{27}{x+3}-\frac{27}{(x+3)^2}\right) \ dx}$ [/mm]

setze [mm] $u'=e^x$ [/mm] und [mm] $v=x-6+\frac{27}{x+3}-\frac{27}{(x+3)^2}$ [/mm]

Damit werden die Ausdrücke, die du bekommst, auch integrierbar ;-)


Versuche mal, wie weit du kommst ...

>  
> Gruß
>  
> Angelika


LG

schachuzipus

Bezug
                
Bezug
Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:32 Mo 27.07.2009
Autor: AbraxasRishi

Vielen Dank Schachuzipus!

Soweit  war ich ja eigentlich schon(Bei meinem Versuch mit [mm] v'=e^x \quad u=\frac{x^3}{(x+3)^2} [/mm])... Die "nicht elementar integriebaren Ausdrücke" kommen nach dieser 1. partiellen integration und zwar entsteht [mm]\integral{e^x(\frac{x^2}{2}-6x+27ln|x+3|+\frac{27}{x+3})dx}[/mm] Dabei habe ich eigentlich die weitere Integration noch gar nicht versucht sondern die einzelnen Summanden nach Ausmultiplizieren erstmal in Derive eingetippt welches das letzte und vorletze Integral nicht vollständig zu integrieren vermag!

Gruß

Angelika

Bezug
                        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:15 Mo 27.07.2009
Autor: schachuzipus

Hallo nochmal,

> Vielen Dank Schachuzipus!
>  
> Soweit  war ich ja eigentlich schon(Bei meinem Versuch mit
> [mm]v'=e^x \quad u=\frac{x^3}{(x+3)^2} [/mm])... Die "nicht
> elementar integriebaren Ausdrücke" kommen nach dieser 1.
> partiellen integration und zwar entsteht
> [mm]\integral{e^x(\frac{x^2}{2}-6x+27ln|x+3|+\frac{27}{x+3})dx}[/mm]
> Dabei habe ich eigentlich die weitere Integration noch gar
> nicht versucht sondern die einzelnen Summanden nach
> Ausmultiplizieren erstmal in Derive eingetippt welches das
> letzte und vorletze Integral nicht vollständig zu
> integrieren vermag!

Das ist kein Wunder, ich hatte ja auch gesagt, dass du [mm] $u'=e^x$ [/mm] und $v=x-6+...$ setzen sollst, also genau andersherum wie du gerechnet hast ...

Vertausche mal die Rollen, dann klappt das auch mit dem Integrieren ...

>  
> Gruß
>  
> Angelika


LG

schachuzipus

Bezug
        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:22 Mo 27.07.2009
Autor: Al-Chwarizmi


> [mm]\integral{\frac{e^xx^3}{(x+3)^2}dx}[/mm]
>  Hallo!
>  
> Ich komm einfach nicht drauf wie das geht! Habe schon
> partiellle Integration mit [mm]v'=e^x \quad u=\frac{x^3}{(x+3)^2}[/mm]
> versucht und mit [mm]u=\frac{1}{(x+3)^2}[/mm] etc. Beide Ansätze
> führen auf nicht elementar integriebare Ausdrücke. Kann
> mir bitte jemand einen kleinen Tipp geben?
>  
> Gruß
>  
> Angelika


Hallo Angelika,

um die etwas "blöden" Nenner loszuwerden,
würde ich zuallererst  u:=x+3  mit du=dx
substituieren. Es bleiben aber dann etwa
solche Integrale wie

      [mm] \integral\frac{e^{u}}{u}\,du [/mm]

stehen, die nur durch Reihendarstellung
zu integrieren sind.

LG    Al-Chw.

Bezug
        
Bezug
Stammfunktion: später Nachtrag
Status: (Antwort) fertig Status 
Datum: 17:50 Mi 05.08.2009
Autor: Al-Chwarizmi


> [mm]\integral{\frac{e^xx^3}{(x+3)^2}dx}[/mm]


Hallo Angelika,

ich hatte dieses Integral nochmal durchgerechnet
und festgestellt, dass man es tatsächlich auch
"elementar" lösen kann. Ergebnis:

      [mm] $\left(x-7+\frac{27}{x+3}\right)*e^x+C$ [/mm]

Die nicht elementar integrierbaren Bestandteile
fielen wie durch ein Wunder einfach wieder raus.

LG     Al-Chw.







Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de