www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Stammfunktion
Stammfunktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:25 Mi 08.06.2005
Autor: NECO

hallo lieber Mathematiker/in  

ich soll raten was die Stammfunktion von diesem Funktion ist. :-)
Könnt ihr mir helfen? Ich kann ea auch nicht mit partiele Integration und Sub.

[mm] f(x):=\bruch{1}{x \*ln(x) \*ln(ln(x))} [/mm]

und

[mm] f(x):=sin(\wurzel{x}) [/mm]

also ich weiß ja dass sin(x) die Ablietung von -cos(x) ist. kann mann dann so schrieben F(x)= [mm] -cos(\wurzel{x}) [/mm]

        
Bezug
Stammfunktion: Aufgabe 1 : Tipp
Status: (Antwort) fertig Status 
Datum: 17:44 Mi 08.06.2005
Autor: Roadrunner

Hallo NECO !


[mm]f(x) \ := \ \bruch{1}{x*\ln(x)*\ln(\ln(x))}[/mm]


Versuche es doch mal mit der Substitution:   $z \ := \ [mm] \ln\left[\ln(x)\right]$ [/mm]


Damit wird:   $z' \ = \ [mm] \bruch{dz}{dx} [/mm] \ = \ [mm] \bruch{1}{\ln(x)} [/mm] * [mm] \bruch{1}{x}$ $\gdw$ [/mm]   $dx \ = \ [mm] x*\ln(x)*dz$ [/mm]


Gruß vom
Roadrunner


Bezug
                
Bezug
Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:48 Mi 08.06.2005
Autor: NECO


> Hallo NECO !
>  
>
> [mm]f(x) \ := \ \bruch{1}{x*\ln(x)*\ln(\ln(x))}[/mm]
>  
>
> Versuche es doch mal mit der Substitution:   [mm]z \ := \ \ln\left[\ln(x)\right][/mm]

Ich weiß es nicht so genau, wie es mit Substitution gilt. Kannst du mir sagen, was man aussuchen muss, und wo man einsetzen muss. Ich vertähe das in Büchern nicht so gut?

Ist die andere Stammfunktion richtig??  Danke

>
> Damit wird:   [mm]z' \ = \ \bruch{dz}{dx} \ = \ \bruch{1}{\ln(x)} * \bruch{1}{x}[/mm]
>   [mm]\gdw[/mm]   [mm]dx \ = \ x*\ln(x)*dz[/mm]
>  
>
> Gruß vom
>  Roadrunner
>  


Bezug
                        
Bezug
Stammfunktion: Substitution
Status: (Antwort) fertig Status 
Datum: 18:08 Mi 08.06.2005
Autor: Roadrunner

Hallo NECO !


Ich habe dir doch fast alles vorgegeben ...

Setze jetzt einfach mal ein und kürze weitestgehen:

[mm]\integral_{}^{}{f(x) \ dx} \ = \ \integral_{}^{}{\bruch{1}{x*\ln(x)*\red{\ln[\ln(x)]}} \ \blue{dx}} \ = \ \integral_{}^{}{\bruch{1}{x*\ln(x)*\red{z}} \ \blue{x*\ln(x) * dz}} \ = \ \integral_{}^{}{\bruch{1}{z} \ dz} \ = \ ...[/mm]


Gruß vom
Roadrunner


Bezug
        
Bezug
Stammfunktion: Aufgabe 2: Substitution
Status: (Antwort) fertig Status 
Datum: 21:36 Mi 08.06.2005
Autor: MathePower

Hallo,

> [mm]f(x):=sin(\wurzel{x})[/mm]
>  
> also ich weiß ja dass sin(x) die Ablietung von -cos(x) ist.
> kann mann dann so schrieben F(x)= [mm]-cos(\wurzel{x})[/mm]  

Um die Stammfunktion zu bestimmen hilft hier folgende Substitution:

[mm]\begin{array}{l} x\; = \;z^{2} \\ dx\; = \;2z\;dz \\ \end{array}[/mm]

Dann steht nämlich da:

[mm]\int {2z\;\sin \;z\;dz} [/mm]

Dieses Integral kann dann mit partieller Integration gelöst werden.

Gruß
MathePower



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de