www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Stammfunktion bilden
Stammfunktion bilden < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:19 Mi 20.06.2012
Autor: v6bastian

Aufgabe
[mm] \integral_{}^{}{f(5^{x}+(sinx)^{-2}) dx} [/mm]

Hallo,

ich brauche Hilfe um hier die Stammfunktion zu bilden

Bei dem [mm] 5^{x} [/mm] habe ich schon gesehen, dass daraus [mm] e^{x ln 5} [/mm] wird und die Stammfunktion anschließend zu [mm] \bruch{e^{x ln 5}}{ln 5} [/mm] gebildet wird.

Die zweite Hälfte wird nachher zu -cot(x), aber wie passiert das? Kann mir das jemand freundlicherweise step-by-step erläutern?

Gruß und Danke
Bastian

        
Bezug
Stammfunktion bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 10:50 Mi 20.06.2012
Autor: reverend

Hallo Bastian,

kleiner Tippfehler?

> [mm]\integral_{}^{}{f(5^{x}+(sinx)^{-2}) dx}[/mm]

Das f ist hier hoffentlich überflüssig, ansonsten wäre über die Aufgabe auch nicht viel zu sagen.

>  Hallo,
>  
> ich brauche Hilfe um hier die Stammfunktion zu bilden
>  
> Bei dem [mm]5^{x}[/mm] habe ich schon gesehen, dass daraus [mm]e^{x ln 5}[/mm]
> wird und die Stammfunktion anschließend zu [mm]\bruch{e^{x ln 5}}{ln 5}[/mm]
> gebildet wird.

Ja, genau. Du zerlegst das Integral einfach in zwei. Dies ist der erste Teil. [ok]

> Die zweite Hälfte wird nachher zu -cot(x), aber wie
> passiert das? Kann mir das jemand freundlicherweise
> step-by-step erläutern?

Das ist eins der Integrale, an dem man sich ziemlich die Zähne ausbeißen kann, obwohl es eigentlich ganz einfach ist. Es empfiehlt sich, solche Stammfunktionen auswendig zu lernen, sonst kann man in Klausuren ziemlich aufgeschmissen sein, weil man den folgenden "Trick" dann eben gerade nicht findet.

[mm] \integral{\bruch{1}{\sin^2{x}}\ dx}=\integral{\bruch{\sin^2{x}+\cos^2{x}}{\sin^2{x}}\ dx}=\integral{1+\bruch{\cos{x}}{\sin^2{x}}*\cos{x}\ dx}=\integral{1\ dx}+\integral{\bruch{\cos{x}}{\sin^2{x}}*\cos{x}\ dx} [/mm]

Das rechte Integral kann man ziemlich einfach per partieller Integration lösen, wenn man im linken Bruch die Struktur [mm] \bruch{f'(x)}{(f(x))^2} [/mm] erkennt und damit fast schon die Ableitung von [mm] \bruch{1}{f(x)}. [/mm]

Grüße
reverend



Bezug
                
Bezug
Stammfunktion bilden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:04 Mi 20.06.2012
Autor: v6bastian

Hallo reverend,

danke für deine Erläuterung. Ich gehöre offensichtlich zu den Personen die selbst mit Anleitung das ganze nicht nachvollziehen können :( Werde deinen Ratschlag befolgen und die Sachen auswendig lernen.

Das f in dem Integral stammt aus Eingabehilfe. Hab da nur das x mit der Funktion ersetz. Sorry.

Danke & Gruß
Bastian

Bezug
                        
Bezug
Stammfunktion bilden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:13 Mi 20.06.2012
Autor: reverend

Hallo nochmal,

> danke für deine Erläuterung. Ich gehöre offensichtlich
> zu den Personen die selbst mit Anleitung das ganze nicht
> nachvollziehen können :( Werde deinen Ratschlag befolgen
> und die Sachen auswendig lernen.

Hattet Ihr denn partielle Integration? Damit ist es doch dann leicht machbar. Vorher habe ich doch nur den "trigonometrischen Pythagoras" angewandt und damit die 1 im Zähler ersetzt, ab da ist es ein bisschen Bruchrechnung und "Umschreiben".

Ich konnte damals übrigens nicht mehr auswendig als die Ableitung von [mm] \tan{x}. [/mm] Das reichte für solche Fälle eigentlich aus, damit irgendwo ein Glöckchen klingelte, wenn irgendwo [mm] \bruch{1}{\sin^2{x}} [/mm] oder [mm] \bruch{1}{\cos^2{x}} [/mm] zu integrieren war.

> Das f in dem Integral stammt aus Eingabehilfe. Hab da nur
> das x mit der Funktion ersetz. Sorry.

Schon gut. ;-)

Dann erstmal viel Erfolg mit den Integrationen. Das gilt nicht umsonst als hohe Kunst; oft muss man erst einmal auf irgendeinen Kniff kommen, z.B. eine geschickte Substitution.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de