www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Stammfunktion einer E-Funktion
Stammfunktion einer E-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion einer E-Funktion: Idee
Status: (Frage) beantwortet Status 
Datum: 14:08 So 14.12.2008
Autor: Dorlechen

Aufgabe
Ein Pharmaunternehmen produziert ein Medikament, das in Tablettenform verabreichtRückfrage wird. Der zeitliche Verlauf der Wirkstoffkonzentration im Blut eines Patienten kann in den ersten 24 Stunden nach Einnahme einer Tablette näherungsweise durch die Funktion f mit [mm] f(t)=8\cdot\ [/mm] t [mm] \cdot\ [/mm] e^(-0.25t) ;beschrieben werden. Dabei wird die Zeit t in Stunden seit der Einnahme (t=0) und die Wirkstoffkonzentration f(t) im Blut in Milligramm pro Liter (mg/l) gemessen.

Weise nach, dass die Funktion F mit [mm] F(t)=-32\cdot\ [/mm] (t+4)/cdot/ e(8-0.25t) eine Stammfunktion von f ist.
Bestimmen Sie die mittlere Wirkstoffkonzentration in den ersten 12 Stunden nach der Einnahme des Medikamentes.

Also, wir haben das in der Schule gerechnet, und das hier gemacht:
F(t)= [mm] \integral\ [/mm] f(t) dt
= [mm] \integral\ [/mm] 8t [mm] \cdot\ [/mm] e^(-0.25t) dt

Das versteh ich auch noch...
Aber den nächsten Schritt verstehe ich leider nicht mehr:
= 8t [mm] \cdot\ (-4)\cdot\ [/mm] e^(0.25t) - [mm] \integral\ [/mm] 8 [mm] \cdot\ [/mm] (-4) [mm] \cdot\ [/mm] e^(0.25t) dt
= -32t [mm] \cdot\ [/mm] e^(0.25t) + [mm] 32\cdot\ [/mm] (-) [mm] \cdot\ [/mm] e^(0.25t)
= -32 (t+4) [mm] \cdot\ [/mm] e^(0.25t)
Wie kommt mein Lehrer da auf die -4???
Hat jemand eine Idee??
Freue mich über jeden kleinen Hinweis :)


        
Bezug
Stammfunktion einer E-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 So 14.12.2008
Autor: Ajnos

Hallöchen,
ich versuche mich mal an einen "kleinen" Hinweis. Und picke dazu nur den Knackpunkt [mm] e^{-0.25t} [/mm] raus:

also [mm] e^{-0.25t}= e^{-\bruch{1}{4}t} [/mm]
Um die Stammfunktion zu erhalten musst du "aufleiten", dazu holst du den Kehrwert von [mm] -\bruch{1}{4} [/mm] vor das e und hast somit
-4 [mm] e^{\bruch{1}{4}t} [/mm]
Ist das verständlich?


Bezug
                
Bezug
Stammfunktion einer E-Funktion: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:46 So 14.12.2008
Autor: Dorlechen

Aaaaah, super!! Da geht mir ein Licht auf...
Vielen vielen Dank!!!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de