www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Stammfunktion gesucht
Stammfunktion gesucht < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion gesucht: Idee oder Tipp
Status: (Frage) beantwortet Status 
Datum: 13:31 Sa 08.07.2017
Autor: Frisco

Aufgabe
gesucht ist das Wegintegral auf dem Intervall [mm][t_1 ; t_2][/mm] zu der Funktion f mit [mm]f(x)=S-be^{kx} ; x \in \IR[/mm].

Ich habe diese Frage noch in keinem anderen Forum gestellt.




Das Wegintegral wird doch mit der Formel
[mm]\int_{t_1}^{t_2}{\sqrt{1+(f'(x))^2} dx}[/mm]
berechnet (Anwendung vom Satz des Pythagoras)
Wenn ich nun dies auf die obige Funktion loslasse, dann erhalte ich mit [mm]f'(x)=-kbe^{kx}[/mm] den folgenden Ausruck:
[mm]\int_{t_1}^{t_2}{\sqrt{1+(-kbe^{kx})^2} dx}=\int_{t_1}^{t_2}{\sqrt{1+b^2k^2e^{2kx}} dx}[/mm]
Nun weiß ich nicht wie ich zu diesem Integral eine Stammfunktion bilden soll.
Kann mir bitte jemand helfen, mit welchem Verfahren ich die bilden kann, beziehungsweise mir auch zeigen wie sich diese berechnen lässt.

Danke :-)

        
Bezug
Stammfunktion gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Sa 08.07.2017
Autor: Diophant

Hallo,

> gesucht ist das Wegintegral auf dem Intervall [mm][t_1 ; t_2][/mm]
> zu der Funktion f mit [mm]f(x)=S-be^{kx} ; x \in \IR[/mm].

>

> Ich habe diese Frage noch in keinem anderen Forum
> gestellt.

>
>

> Das Wegintegral wird doch mit der Formel
> [mm]\int_{t_1}^{t_2}{\sqrt{1+(f'(x))^2} dx}[/mm]
> berechnet
> (Anwendung vom Satz des Pythagoras)
> Wenn ich nun dies auf die obige Funktion loslasse, dann
> erhalte ich mit [mm]f'(x)=-kbe^{kx}[/mm] den folgenden Ausruck:
> [mm]\int_{t_1}^{t_2}{\sqrt{1+(-kbe^{kx})^2} dx}=\int_{t_1}^{t_2}{\sqrt{1+b^2k^2e^{2kx}} dx}[/mm]

>

> Nun weiß ich nicht wie ich zu diesem Integral eine
> Stammfunktion bilden soll.
> Kann mir bitte jemand helfen, mit welchem Verfahren ich
> die bilden kann, beziehungsweise mir auch zeigen wie ich
> diese berechnen lässt.

Das geht mit einer geeigneten Substitution. Probiere mal ein wenig herum, das solltest du selbst hinbekommen.


Gruß, Diophant

Bezug
                
Bezug
Stammfunktion gesucht: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:58 Sa 08.07.2017
Autor: Frisco

Soll ich den Ausdruck [mm] \sqrt{1+b^2k^2e^{2kx}} [/mm] substituieren?
Wolframalpha wirft mir zwar eine Stammfunktion raus, dort steht aber etwas mit tanh^-1
und ich würde gerne dies verstehen.

Bezug
                        
Bezug
Stammfunktion gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 14:09 Sa 08.07.2017
Autor: Diophant

Hallo,

> Soll ich den Ausdruck [mm] \sqrt{1+b^2k^2e^{2kx}} [/mm] substituieren?

Das ergibt ja eher wenig Sinn.

> Wolframalpha wirft mir zwar eine Stammfunktion raus, dort
> steht aber etwas mit tanh^-1
> und ich würde gerne dies verstehen.

Dann hast du nicht genau genug hingesehen. Wolframalpha gibt zwei alternative Darstellungen aus, wobei die zweite ohne Arkustangens auskommt.

Substituiere

[mm] u=1+b^2k^2e^{2kx} [/mm]

und schau dir mal an, auf was das führt.


Gruß, Diophant

Bezug
                                
Bezug
Stammfunktion gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 Sa 08.07.2017
Autor: Frisco

Lieber Diophant,

vielen Dank ich komme auf die Lösung mit dem ln, nach zweimaligen Substituieren und anschließender Partialbruchzerlegung :-)
Eine Frage habe ich dennoch, wie kommt die andere Lösung mit dem tanh^-1 zustande?
Ich will kein Lösungsweg... mich interessiert nur welche Idee dahinter steckt.

Bezug
                                        
Bezug
Stammfunktion gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 Sa 08.07.2017
Autor: Diophant

Hallo,

> Lieber Diophant,

>

> vielen Dank ich komme auf die Lösung mit dem ln, nach
> zweimaligen Substituieren und anschließender
> Partialbruchzerlegung :-)

Und? Ging doch, oder? ;-)

> Eine Frage habe ich dennoch, wie kommt die andere Lösung
> mit dem tanh^-1 zustande?
> Ich will kein Lösungsweg... mich interessiert nur welche
> Idee dahinter steckt.

Die []Areatangensfunktion ist durch Logarithmen darstellbar. Dann muss man bedenken, dass das symbolische Integrieren beim Programmieren eines CAS sicherlich zu den anspruchsvolleren Aufgaben gehört und das Wolframalpha ja nicht die ganze Rechenpower von Mathematica zur Verfügung stellt. Von daher ist es zumindest nachvollziehbar, dass die Darstellung von Integralen in WA oft ziemlich holprig ist. Ich weiß nicht, wie das in Mathematica aussehen würde, aber ich kenne diese Problematik bspw. aus Mathcad Prime auch, wo ja immerhin das deutsche CAS MuPAD unter der Oberfläche werkelt.


Gruß, Diophant

Bezug
                                                
Bezug
Stammfunktion gesucht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:57 Sa 08.07.2017
Autor: Frisco

Danke für die Infos. Ich werde mir den Wikibeitrag direkt mal durchlesen.

Bezug
                                                
Bezug
Stammfunktion gesucht: Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:05 Sa 08.07.2017
Autor: Frisco

Noch kurz zur Lösung mit dem tanh^-1.

Ist es richtig, dass man das Integral nach Substitutionen (man erhält etwas der Form [mm] \int{\frac{s^2}{s^2-1} ds}[/mm])
dies mittels partielle integration berechnet?
Denn [mm]tanh^{-1}(x)[/mm] abgeleitet ergibt [mm] \frac{1}{1-x^2}[/mm]
Das heißt man würde dann wie folgt weiter rechnen:
[mm] \int{\frac{s^2}{s^2-1} ds}= \int{-s^2 \cdot\frac{1}{1-s^2} ds}=...[/mm]

Bezug
                                                        
Bezug
Stammfunktion gesucht: hat sich erledigt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:38 Sa 08.07.2017
Autor: Frisco

der Nulltrick hat mir geholfen...
dennoch danke für alles :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de