www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Stammfunktion, holomorphe Fkt
Stammfunktion, holomorphe Fkt < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion, holomorphe Fkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:13 Fr 19.06.2009
Autor: Mathec

Hallo Leute!
Ich brauch mal wieder eure Hilfe, und zwar sitze ich gerade am Cauchyschen Integralsatz. Ich weiß, wenn ich eine holomorphe Funktion auf einem konvexen Gebiet definiert habe, ist das Integral davon über alle geschlossenen Integrationswege 0 und damit existiert eine Stammfunktion. Ich habe mir nun überlegt, dass das ganze auch schon für konvexe Mengen (also keine Gebiete mehr) gelten muss! Könnt ihr mir ein kurzes Feedback geben, ob meine Überlegungen so stimmen und die Voraussetzung des Gebietes wirklich nicht notwendig ist?
Danke schonmal!!!
Mathec

        
Bezug
Stammfunktion, holomorphe Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:16 Fr 19.06.2009
Autor: fred97

Eine konvexe offene Menge ist ein Gebiet !!!

FRED

Bezug
                
Bezug
Stammfunktion, holomorphe Fkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:25 Fr 19.06.2009
Autor: Mathec

Oh ja, stimmt!! Ich glaub, ich denk schon zu lange darüber nach:-)
Aber wieso heißt das dann "Cauchyscher Integralsatz für konvexe Gebiete", und nicht für konvexe Mengen???

Bezug
                        
Bezug
Stammfunktion, holomorphe Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 11:15 Sa 20.06.2009
Autor: pelzig

Konvexe Mengen sind immer zusammenhängend und einfach zusammenhängend. Aber nicht jede konvexe Menge ist ein Gebiet, wohl aber jede offene konvexe Menge, wie Fred schon gesagt hat. Ich würde mal behaupten, dass es aus historischen Gründen oder sowas in der Funktionentheorie einfach unüblich ist, von offenen Mengen zu sprechen. Man nimmt irgendwie immer gleich Gebiete, auch wenn Offenheit schon gereicht hätte.

Gruß, Robert

Bezug
                                
Bezug
Stammfunktion, holomorphe Fkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:25 Sa 20.06.2009
Autor: Mathec

Ok, sowas hab ich mir auch schon gedacht! Aber Vielen Dank für deine Antwort!
Grüße
Mathec

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de