www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Stammfunktionen von Integralen
Stammfunktionen von Integralen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktionen von Integralen: Bitte Um schriitweise Rechnung
Status: (Frage) beantwortet Status 
Datum: 21:48 Mi 06.09.2006
Autor: Emma88

Aufgabe
Geben Sie eine Stammfunktion für alle folgenden Funktionen an:
[mm] a)f(x)=6-(8/x^3) [/mm]
[mm] b)f(x)=x+(2/x^2) [/mm]
[mm] c)f(x)=2x-(6/x^3) [/mm]
[mm] d)f(x)=(6-x)/(x^3) [/mm]
[mm] e)f(x)=2(x^2-6e^3x) [/mm]
[mm] f)f(x)=4(x^3+4e^-2x) [/mm]
g)f(x)=1/2(2x-8e^-1/2x)
[mm] h)f(x)=a(x^2-4e^4x) [/mm]
[mm] i)f(x)=-3/(4+3x)^2 [/mm]
[mm] j)f(x)=-6/(1+2x)^2 [/mm]
[mm] k)f(x)=6/(2+3x)^3 [/mm]
[mm] l)f(x)=-2/(3-x)^2 [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Bitte um Hilfe!Verstehe Integralrechnung nicht ganz.Somt wäre es lieb wenn ihr diese Aufgaben einmal schritweise berechnen könnt, damit ich es mir selber beibringen kann un verstehen kann!Danke, super lieb!

Aufgabe: Geben Sie eine Stammfunktion für alle folgenden Funktionen an:

[mm] a)f(x)=6-(8/x^3) [/mm]
[mm] b)f(x)=x+(2/x^2) [/mm]
[mm] c)f(x)=2x-(6/x^3) [/mm]
[mm] d)f(x)=(6-x)/(x^3) [/mm]
[mm] e)f(x)=2(x^2-6e^3x) [/mm]
[mm] f)f(x)=4(x^3+4e^-2x) [/mm]
g)f(x)=1/2(2x-8e^-1/2x)
[mm] h)f(x)=a(x^2-4e^4x) [/mm]
[mm] i)f(x)=-3/(4+3x)^2 [/mm]
[mm] j)f(x)=-6/(1+2x)^2 [/mm]
[mm] k)f(x)=6/(2+3x)^3 [/mm]
[mm] l)f(x)=-2/(3-x)^2 [/mm]

Bitte Schrittweise, damit ich es nachvollziehen kann.Danke!!!!!!!!!!!

        
Bezug
Stammfunktionen von Integralen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:55 Mi 06.09.2006
Autor: Teufel

a) [mm] \integral_{ }^{ }{(6-\bruch{8}{x³}) dx}=\integral_{ }^{ }{(6-8x^{-3}) dx}=6x+4x^{-2}+c=6x+\bruch{4}{x²}+c [/mm]

Da man eine Stammfunktion angeben soll kannst du das c durch irgendeine Zahl ersetzen.


Integrieren ist ja Umkehrung der Ableitung.

Ableiten tut man ja z.B. so:

[mm] f(x)=2x²\Rightarrow Exponent*Koeffizient\Rightarrow Exponent-1\Rightarrow [/mm] f'(x)=4x

Und wenn du 4x integrierst, ist das genau andersherum:

[mm] f(x)=4x\Rightarrow Exponent+1\Rightarrow Koeffizient:Exponent\Rightarrow [/mm] F(x)=2x²+c
(das +c ist ja dabei, da es beim Ableiten wieder wegfallen würde)

Oder anders geschrieben:

[mm] \integral_{ }^{ }{4x dx}=2x²+c. [/mm]


Der Trick dabei ist, dass man versucht umzuformen, sodass man keine xe im Nenner hat, wenn Brüche im Spiel sind... und [mm] \wurzel{x} [/mm] kann man ja auch mit [mm] x^{0.5} [/mm] umschreiben. Alle deine Aufgaben kann man so umformen und lösen. Hast du eine Summe kannst du jeden Summanden einzeln integrieren (wie ich's bei a gemacht hab).


Allgemein kann man sagen:

[mm] f(x)=ax^{n} [/mm]
Integration:
[mm] F(x)=\bruch{a}{n+1}x^{n+1}+c[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de