www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Stammfunktionenbildung
Stammfunktionenbildung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktionenbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:00 Mo 20.03.2006
Autor: Licht87

Aufgabe
Integrieren Sie nach der Variablen t.

480/ [mm] [576+(t-60)^2] [/mm]

Also eigentlich ist die Aufgabe als Bruch geschrieben, wobei 480 im Zähler und der Rest im Nenner steht.
Ich bin soweit, dass ich es für klug halte (t-60) durch u zu ersetzen und den Bruch irgendwie aufzuteilen. Leider hakt es bei mir an dieser Stelle schon. Ich habe auch schon den Tipp bekommen, dass es irgendwie mit arc tan zu lösen sei, ich verstehe bloß nicht wie....
Bitte helft mir, ich muss das morgen schon vorstellen können.

(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)

Danke schon im Voraus, Licht87

        
Bezug
Stammfunktionenbildung: Tipp zur Umformung
Status: (Antwort) fertig Status 
Datum: 19:09 Mo 20.03.2006
Autor: Loddar

Hallo Licht87,

[willkommenmr] !!


Klammere zunächst im Nenner die $576_$ aus:

[mm] $\bruch{480}{576+(t-60)^2} [/mm] \ = \ [mm] \bruch{480}{576*\left[1+\bruch{(t-60)^2}{576}\right]} [/mm] \ = \ [mm] \bruch{480}{576}*\bruch{1}{1+\bruch{(t-60)^2}{24^2}} [/mm] \ = \ [mm] \bruch{5}{6}*\bruch{1}{1+\left(\bruch{t-60}{24}\right)^2}$ [/mm]


Und nun den Bruch innerhalb der Klammer substituieren: $u \ := \ [mm] \bruch{t-60}{24}$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
Stammfunktionenbildung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:13 Mo 20.03.2006
Autor: Licht87

Ersteinmal danke für die schnelle Antwort.
Ich habe dann allerdings noch eine Frage, wenn ich das dann soweit integriere, dann komme ich auf

[mm] \bruch{5}{6} \* [/mm] arc tan  [mm] \bruch{u}{1} [/mm] +c

kann das denn so hinkommen? Und wenn ich dann u wieder ersetzen will, muss ich dann noch was beachten oder steht dann da noch

[mm] \bruch{t-60}{24} [/mm]  ?

So ganz verstehe ich das noch nicht...

Bezug
                        
Bezug
Stammfunktionenbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Mo 20.03.2006
Autor: dormant

Hallo!

> Ersteinmal danke für die schnelle Antwort.
>  Ich habe dann allerdings noch eine Frage, wenn ich das
> dann soweit integriere, dann komme ich auf
>  
> [mm]\bruch{5}{6} \*[/mm] arc tan  [mm]\bruch{u}{1}[/mm] +c

Genau!
  

> kann das denn so hinkommen? Und wenn ich dann u wieder
> ersetzen will, muss ich dann noch was beachten oder steht
> dann da noch
>  
> [mm]\bruch{t-60}{24}[/mm]  ?

Einfach u durch [mm] \bruch{t-60}{24} [/mm] ersetzen.

Gruß,
dormant

Bezug
                        
Bezug
Stammfunktionenbildung: Faktor fehlt!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:01 Mo 20.03.2006
Autor: Loddar

Hallo Licht87!


  

> [mm]\bruch{5}{6} \*[/mm] arc tan  [mm]\bruch{u}{1}[/mm] +c

Da fehlt aber aus der Substitution noch der Faktor $24_$ , es muss heißen:

[mm] $\integral{... \ dx} [/mm] \ = \ [mm] \bruch{5}{6}*\red{24}*\arctan(u) [/mm] + C \ = \ [mm] 20*\arctran(u)+C [/mm] \ = \ ...$


Gruß
Loddar


Bezug
                                
Bezug
Stammfunktionenbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:42 Di 21.03.2006
Autor: Licht87

Genau, dass ist mir dann auch noch aufgefallen, aber das ist okay. Danke jedenfalls für die Hilfen!
Gruß, Licht87

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de