www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Stammfuntion einer ln-Fkt.
Stammfuntion einer ln-Fkt. < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfuntion einer ln-Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:26 Mi 14.03.2007
Autor: Alessia_1988

Aufgabe
Y=f(x)=(2-x)*ln(2-X)

Hallo!
Ich brauch mal eure Hilfe!
Diese Funktion ist mir als hAUSAUFGABE GEGEBEN WURDEN UND ICH SOLLTE EINE kURVENDISKUSSION DURCHFÜHREN :dIES HAB ICH AUCH GESCHAFFT ,außer der Teil mit dem Flächeninhalt!Ich weiß nicht wie ich diese Funktion integrieren soll, also STammfunktion bilden soll!
Ich hoffe mir kann jemand helfen. Ich habe es ja schon versucht und bin zu diesem Ergebnis gekommen: F(x) [mm] (2x-(1/2)x^2)*ln(2-x)-(1/4)x^2 [/mm]
Dies ist jedoch falsch!
Ich hoffe mir kann jemand auf die Sprünge helfen und es erklären!
VG
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stammfuntion einer ln-Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 Mi 14.03.2007
Autor: barsch

Hi,

wow, okay, dann lass es uns mal versuchen:

Vorschlag: Partielle Integration.


[mm] \integral{(2-x)*ln(2-x) dx} [/mm] = [mm] -\bruch{1}{2}*(2-x)^{2}*ln(2-x)-\integral{-\bruch{1}{2}*(2-x)^{2}*\bruch{1}{2-x}*(-1)dx} [/mm]

Ich bin kein Freund vieler Vorzeichen!

[mm] =-\bruch{1}{2}*(2-x)^{2}*ln(2-x)-\integral{\bruch{1}{2}*(2-x)^{2}*\bruch{1}{2-x}dx} [/mm]

[mm] =-\bruch{1}{2}*(2-x)^{2}*ln(2-x)-\integral{\bruch{1}{2}*(2-x)dx} [/mm]

[mm] =-\bruch{1}{2}*(2-x)^{2}*ln(2-x)+\bruch{1}{4}*(2-x)^{2} [/mm]

Ich prüfe aber immer noch mal. Weil Vorzeichenfehler sind schnell gemacht.

Also: f(x)= [mm] =-\bruch{1}{2}*(2-x)^{2}*ln(2-x)+\bruch{1}{4}*(2-x)^{2} [/mm]

[mm] f'(x)=-\bruch{1}{2}*(2-x)*2*(-1)*ln(2-x)-\bruch{1}{2}*(2-x)^{2}*\bruch{1}{(2-x)}*(-1)+\bruch{1}{4}*(2-x)*2*(-1) [/mm]

[mm] f'(x)=(2-x)*ln(2-x)+\bruch{1}{2}*(2-x)-\bruch{1}{2}*(2-x) [/mm]

ergo: f'(x)=(2-x)*ln(2-x)

Vorzeichen müssten also stimmen, aber du wirfst ja sicher noch mal einen Blick drüber.

MfG


Bezug
                
Bezug
Stammfuntion einer ln-Fkt.: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 17:29 Mi 14.03.2007
Autor: Mary15


> Hi,
>  
> wow, okay, dann lass es uns mal versuchen:
>  
> Vorschlag: Partielle Integration.
>  
>
> [mm]\integral{(2-x)*ln(2-x) dx}[/mm] =
> [mm]-\bruch{1}{2}*(2-x)^{2}*ln(2-x)-\integral{-\bruch{1}{2}*(2-x)^{2}*\bruch{1}{2-x}*(-1)dx}[/mm]
>  

Hallo,
bei partielle Integration für u = ln(2-x) und dv = 2-x
wird du = [mm] -\bruch{1}{2-x} [/mm] und [mm] v=2x-\bruch{x^2}{2} [/mm]

Also [mm] \integral{(2-x)*ln(2-x) dx} [/mm] = [mm] (2x-\bruch{x^2}{2})*ln(2-x)+ \integral{(2x-\bruch{x^2}{2})*\bruch{1}{2-x}dx} [/mm]

wie kommst Du auf [mm] -\bruch{1}{2}*(2-x)^{2}*ln(2-x)-\integral{-\bruch{1}{2}*(2-x)^{2}*\bruch{1}{2-x}*(-1)dx} [/mm] ?




Bezug
                        
Bezug
Stammfuntion einer ln-Fkt.: Korrektur?
Status: (Korrektur) oberflächlich richtig Status 
Datum: 18:59 Mi 14.03.2007
Autor: barsch

Hi Mary 15,

danke, dass du meine Antwort zu Alessia_1988 so genau geprüft hast, aber ich kann deine Meinung leider nicht teilen. Weil die Stammfunktion, die ich rausbekommen habe, hat die Ableitung, die gefordert ist.

Ich nehme Änderungsvorschläge gerne an. Muss mich bei Alessia_1988 entschuldigen, weil sie jetzt sicher völlig im Dunkeln tappt?! Ich hoffe, ich habe dich nicht weiter irritiert!

Ich versuch dir meine Vorgehensweise mal grob zu skizzieren:

[mm] \integral{u'v dx}=uv-\integral{uv' dx} [/mm]

Mein u'(x)=(2-x), u(x)=- [mm] \bruch{1}{2}(2-x)^{2} [/mm]


und mein v(x)=ln(2-x), v'(x)=- [mm] \bruch{1}{2-x} [/mm]

und so ergibt sich dann meine Rechnung. Vielleicht äußerst du dich,Mary 15, oder ein dritter Mal dazu, im Interesse von Alessia_1988.

Sorry, Alessia_1988. Hast du die Schritte evtl. nachvollzogen und kannst dich dazu äußern?

MfG





Bezug
                        
Bezug
Stammfuntion einer ln-Fkt.: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 19:23 Mi 14.03.2007
Autor: barsch

Hi,

meine Mitteilung (Korrektur?) hat sich erledigt. Du machst quasi dasselbe wie ich, nur du leitest ganz falsch auf.

Du musst (2-x) als ganzes sehen. Und dann leitest du wie folgt auf:

f(x)=(2-x)

F(x)= - [mm] \bruch{1}{2}*(2-x)^{2} [/mm]

Ich habe keine Ahnung, ob du die Markierung, dass mein Artikel Fehler beinhaltet, wieder wegbekommst.

Naja, ich habe ja erst selbst an meiner Lösung gezweifelt. ;)

MfG

Bezug
                                
Bezug
Stammfuntion einer ln-Fkt.: Korrekturmitteilung
Status: (Korrektur) oberflächlich richtig Status 
Datum: 21:28 Mi 14.03.2007
Autor: Mary15

Sorry ich war voreilig. Nach dem Du angegeben hast wie Du dv gefunden hast ist mir klar geworden, dass deine Lösung auch richtig ist.

>
> meine Mitteilung (Korrektur?) hat sich erledigt. Du machst
> quasi dasselbe wie ich, nur du leitest ganz falsch auf.

Meine Lösung ist nicht falsch.

>  
> Du musst (2-x) als ganzes sehen. Und dann leitest du wie
> folgt auf:

Man muss nicht die dv-Funktion als ganzes betrachten. v-Funktion kann als Integral von dv berechnet werden und dabei alle Integralregel (auch Summenregel) sind erlaubt.
[mm] \integral{dv} [/mm] = v+C.
Man nimmt v als Stammfunktion bei C=0
In deiner Funktion F(x) F(x)= - [mm]\bruch{1}{2}*(2-x)^{2}[/mm]
  steckt eine Konstante [mm] C\not=0 [/mm] drin, die wird aber später bei der Vereinfachung des Ergebnisses eliminiert. So kommt man zum gleichen Ergebnis.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de