www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Standardabweichung
Standardabweichung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Standardabweichung: Entscheidungsregel
Status: (Frage) beantwortet Status 
Datum: 15:40 Di 16.03.2010
Autor: Kubs

Aufgabe
Die Krankenkasse vermutet, dass der Anteil der P-Kranken (vorher 0,02) in den letzten Jahren gestiefen ist un plant in diesem Fall, die Beiträge für die Krankenversicherten zu erhöhen. Aus diesem Grund sollen 1000 Personen überprüft werden.

a) wie muss die Entscheidungsregel lauten, wenn die KRankenkasse unter dem Aspekt der Kundenfreundlichkeit mit maximal 10% Irrtumswahrscheinlichkeit vermeiden mächte, dass di eBeiträge zu Unrecht erhöht werden?

b)Angenommen, der Anteil der Kranken ist auf 3% gestiegen, Beschreiben sie, welches Risiko aus Sicht der Krankenversicherung bei einer fälschlichen Entscheidung gegen eine Beitragserhöhung unter Anwendung der Regel aus Aufgabenteil a besteht und bestimmen sie hierfür die entsprechende Wahrschienlichkeit

würd ich mit der Standartabweichen versuchen:

Laplace Bedienung ist erfüllt, da

Wurzel von n*p*q = 4,427>3 ist

Dann steht hier in den Lösungen^^ z= k-1-mü+0,5 / o    
der Tabelle kann man den passenden z wert entnehmen und dann steht hier Phi(z) >=0,9... wie kommt dieses Lösungsbuch dadrauf??

kann mir da bitte einer helfen? ich schreib am Freitag abi^^




        
Bezug
Standardabweichung: Stichwort Transformation d. ZV
Status: (Antwort) fertig Status 
Datum: 09:39 Mi 17.03.2010
Autor: karma

Hallo und guten Morgen,

Laplace-Bedingung erfüllt,
man kann also statt der Binomialverteilung die Normalverteilung verwenden und macht keinen großen Fehler.

Aber welche Normalverteilung?

Es gibt "dutzende".

Hier hilft ein (nennen wir es) Trick:

Wir formen unsere Zufallsvariable so um (transformieren sie),
daß sie Mittelwert Null und Standardabweichung Eins bekommt.



Nimm dann die Standardnormalverteilung, davon gibt es nur eine einzige.
Und sie ist tabelliert.

Die Transformationsvorschrift besteht aus "Zentrieren und Normieren", sie lautet:

$z:= [mm] \frac{x-\mu}{\sigma}$, [/mm]

[mm] $\mu$ [/mm] ist der Erwartungswert, [mm] $\sigma$ [/mm] die Standardabweichung.


Als [mm] $\mu$ [/mm] nimm den Erwartungswert der Binomialverteilung ( [mm] $n\*p$ [/mm] ), als [mm] $\sigma$ [/mm] deren Standardabweichung ( [mm] $\sqrt{n\* p\* (1-p)}$ [/mm] ).

Einverstanden?

Wenn nicht,
komm zurück,
bis Freitag is ja noch einen Moment Zeit.

Schönen Gruß
Karsten




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de