www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Standardnormalverteilung?
Standardnormalverteilung? < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Standardnormalverteilung?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:04 Sa 26.09.2009
Autor: Englein89

Aufgabe
Aufgabe:
2500 Berater wurden bzgl. ihres EInkommens befragt. Es ergab sich ein Durchschnittseinkommen von 51800,- mit einer Standardabweichung von 8000,-
a) Wir groß ist die Wahrscheinlichkeit, dass ein zufällig ausgewählter Berater mehr als 49000,- verdient?  


Die Lösung sagt mir:

a)
P(X>49000)=1-P(Z<(49000-51800)/4000)

Wieso kann ich hier direkt von der (Standard)normalverteilung ausgehen? Welche Merkmale liegen denn hier vor, dass ich diese anwenden darf?

Ist es so, dass ich immer, wenn ich [mm] \mu [/mm] und die Standardabweichung gegeben habe, von einer Normalverteilung ausgehen kann?

Wäre schön, wenn mir hier jemand auf die Sprünge helfen kann!

        
Bezug
Standardnormalverteilung?: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Sa 26.09.2009
Autor: Al-Chwarizmi


> Aufgabe:
> 2500 Berater wurden bzgl. ihres EInkommens befragt. Es
> ergab sich ein Durchschnittseinkommen von 51800,- mit einer
> Standardabweichung von 8000,-
> a) Wir groß ist die Wahrscheinlichkeit, dass ein zufällig
> ausgewählter Berater mehr als 49000,- verdient?
>
> Die Lösung sagt mir:
>
> a)
> P(X>49000)=1-P(Z<(49000-51800)/4000)
>
> Wieso kann ich hier direkt von der
> (Standard)normalverteilung ausgehen? Welche Merkmale liegen
> denn hier vor, dass ich diese anwenden darf?
>  
> Ist es so, dass ich immer, wenn ich [mm]\mu[/mm] und die
> Standardabweichung gegeben habe, von einer Normalverteilung
> ausgehen kann?
>  
> Wäre schön, wenn mir hier jemand auf die Sprünge helfen
> kann!


Hallo Englein,

eigentlich müsste man nähere Informationen haben,
etwa von der Art: "Man kann davon ausgehen, dass
die Einkommen annähernd normalverteilt sind".
Ob dies in der Praxis tatsächlich zutrifft, darf man
mit guten Argumenten bezweifeln. Falls es sich z.B.
um Finanzberater aus der Welt der Banker/Bankster
handelt, gibt es unter den 2500 vielleicht 300 Groß-
Abzocker, während sich die übrigen mit deutlich
unterdurchschnittlichem Einkommen begnügen
müssen ... In einem derartigen Fall wäre die Rechnung
nach Normalverteilung sinnlos.
Ein weiteres Problem:  Wenn man Leute einfach nach
ihrem Einkommen befragt, kann man erfahrungs-
gemäss nicht immer mit korrekten Angaben rechnen -
manchmal erhält man wohl überhaupt keine.

LG    Al-Chw.




Bezug
                
Bezug
Standardnormalverteilung?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:38 Sa 26.09.2009
Autor: Englein89

Also müsste ich theoretisch schon wissen oder zumindest die VERMUTUNG anstellen, dass es sich um eine Normalverteilung handelt und kann nicht davon ausgehen, dass nur weil ich die Varianz und den Erwartungswert gegeben habe zwingend Normalverteilung vorliegen habe, richtig?

Ich dachte, dass hier vielleicht irgendein Grenzwertsatz greifen würde, weil ich zB sagen kann, dass die Grundgesamtheit vermutlich unabhängig und identisch verteilt ist; aber zumindest nach Lindenberg-Levy würde ich hier zumindest nicht wie in der Musterlösung auf diesen Weg kommen.

Bezug
                        
Bezug
Standardnormalverteilung?: Antwort
Status: (Antwort) fertig Status 
Datum: 14:10 Sa 26.09.2009
Autor: Al-Chwarizmi


> Also müsste ich theoretisch schon wissen oder zumindest
> die VERMUTUNG anstellen, dass es sich um eine
> Normalverteilung handelt und kann nicht davon ausgehen,
> dass nur weil ich die Varianz und den Erwartungswert
> gegeben habe zwingend Normalverteilung vorliegen habe,
> richtig?

Genau. Ich würde z.B. auf die Unsicherheit bezüglich
der Voraussetzungen hinweisen, dann aber doch die
Rechnung nach Normalverteilung durchführen.

> Ich dachte, dass hier vielleicht irgendein Grenzwertsatz
> greifen würde, weil ich zB sagen kann, dass die
> Grundgesamtheit vermutlich unabhängig und identisch
> verteilt ist; aber zumindest nach Lindenberg-Levy würde
> ich hier zumindest nicht wie in der Musterlösung auf
> diesen Weg kommen.

Falls sich das Einkommen jedes Beraters z.B. als eine
Summe von 20 unabhängigen, identisch verteilten
Komponenten berechnen würde, dürfte man mit einem
Grenzwertsatz argumentieren. Dies entspricht aber
ziemlich sicher nicht der Realität.

LG    Al


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de