www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Statistik - Aufgabentyp unklar
Statistik - Aufgabentyp unklar < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Statistik - Aufgabentyp unklar: Klausurvorbereitung - dringend
Status: (Frage) beantwortet Status 
Datum: 10:33 Mi 15.07.2009
Autor: nachtgold

Aufgabe
Es werden 3 Menüs angeboten:
zu 3, 4, und 8 Euro. Aus Erfahrung weiß man, dass die Hälfter der Gäste sich für das 4-Euro-Menü entscheiden wird, 35% 3 Euro bezahlen, und das Luxusmenü v. d. verbl. 15% gewählt wird. Man nimmt an, dass sich die Gäste kaum wechselseitig beeinflussen, und stuft deshalb ihr
Verhalten als unabhängig ein. Welcher Mindestumsatz wird dann mit einer Wahrscheinlichk.
von 95% vereinnahmt, wenn a) 500 und b) 1000 Teilnehmer kommen?
Hinweis: Betrachten Sie den durchschn. Umsatz pro Teilnehmer.

Hallo,
also es geht um den geschilderten Typ von Klausuraufgaben im Fach Statistik. Behandelt wurden:
- Kombinatorik;
- Lage- und Streuungsparameter (geom.- und harm. Mittel);
- Regression und Korrelation;
- Wahrscheinlichkeitsrechnung (Grundregeln und Verteilungen,  
   Approximation);
- Schätzverfahren (Konfidenzintervalle);
- Hypothesentests (Mittelwerttest, X2-Anpassungs- und Unabh.-test).

Nun ist mir bei der gesuchten Aufgabe nicht klar, wie diese zu lösen sei. Mein einzige Idee ist, die geg. Anteile auf die Teilnehmerzahl umzurechnen, und dann diese jew. '* dem jew. Preis'.
Dann bleibt aber noch die Frage nach den 95%, welche ja eher auf eine Schätzung hinweisen ('...liegt mit Wahrsch. 0,95 zw. x und y...').

Danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Statistik - Aufgabentyp unklar: Antwort
Status: (Antwort) fertig Status 
Datum: 10:52 Mi 15.07.2009
Autor: luis52

Moin nachtgold,

[willkommenmr]

Angenommen, es kommen $n_$ Besucher. Es bezeichne [mm] $X_i$ [/mm] den Konsum des $i_$-ten Besuchers. Den Vorgaben zufolge gilt [mm] $P(X_i=3)=0.35$, $P(X_i=4)=0.50$, $P(X_i=8)=0.15$ [/mm] und [mm] $P(X_i=x)=0$ [/mm] fuer [mm] $x\ne [/mm] 3,4,8$.
Gesucht ist der 5%-Punkt der Verteilung von [mm] $\sum_{i=1}^nX_i$. [/mm]

vg Luis  

Bezug
        
Bezug
Statistik - Aufgabentyp unklar: Antwort
Status: (Antwort) fertig Status 
Datum: 11:05 Mi 15.07.2009
Autor: abakus


> Es werden 3 Menüs angeboten:
>  zu 3, 4, und 8 Euro. Aus Erfahrung weiß man, dass die
> Hälfter der Gäste sich für das 4-Euro-Menü entscheiden
> wird, 35% 3 Euro bezahlen, und das Luxusmenü v. d. verbl.
> 15% gewählt wird. Man nimmt an, dass sich die Gäste kaum
> wechselseitig beeinflussen, und stuft deshalb ihr
>  Verhalten als unabhängig ein. Welcher Mindestumsatz wird
> dann mit einer Wahrscheinlichk.
>  von 95% vereinnahmt, wenn a) 500 und b) 1000 Teilnehmer
> kommen?
>  Hinweis: Betrachten Sie den durchschn. Umsatz pro
> Teilnehmer.
>  Hallo,
>  also es geht um den geschilderten Typ von Klausuraufgaben
> im Fach Statistik. Behandelt wurden:
>  - Kombinatorik;
>  - Lage- und Streuungsparameter (geom.- und harm. Mittel);
>  - Regression und Korrelation;
>  - Wahrscheinlichkeitsrechnung (Grundregeln und
> Verteilungen,  
> Approximation);
>  - Schätzverfahren (Konfidenzintervalle);
>  - Hypothesentests (Mittelwerttest, X2-Anpassungs- und
> Unabh.-test).
>  
> Nun ist mir bei der gesuchten Aufgabe nicht klar, wie diese
> zu lösen sei. Mein einzige Idee ist, die geg. Anteile auf
> die Teilnehmerzahl umzurechnen, und dann diese jew. '* dem
> jew. Preis'.
>  Dann bleibt aber noch die Frage nach den 95%, welche ja
> eher auf eine Schätzung hinweisen ('...liegt mit Wahrsch.
> 0,95 zw. x und y...').
>  
> Danke!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hallo,
bei 1000 Personen werden natürlich nicht genau 500 Personen, sondern nur ca. 500 Persinen das 4-€-Menü wählen.
Ebenso werden nicht genau, sondern nur ca. 350 Leute 3€ bezahlen. Der Rest bezahlt 8€.
Die Einnahmen sind also eine Zufallsgröße, die von den Zufallsgrößen X (Anzahl der 4€-Besteller) und Y (Anzahl der 3€-Besteller) abhängt.
Gruß Abakus



Bezug
        
Bezug
Statistik - Aufgabentyp unklar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:50 Mi 15.07.2009
Autor: nachtgold

Hallo und vielen Dank Ihr beiden! Inspiriert durch Eure Antworten kam ich auf folgende Lösung:
[mm] \mu [/mm] = Summe(x * f) = (4 * 0,5) + (3 * 0,35) + (8 * 0,15) = 4,25

Std.-abweichung davon ist 1,64

Setzt man diese Werte nun in ein Konfidenzintervall für Mittelwerte, sieht die Formel SO aus:

W(Mittelw_Stichprobe - z * geschätzte_Std.-abw._Grundges. <= [mm] \mu [/mm] <= Mittelw_Stichprobe + z * geschätzte_Std.-abw._Grundges.) = 0,95

W(4,25 - 1,96 * 0,073 <= [mm] \mu [/mm] <= 4,25 + 1,96 * 0,073) = 0,95
--> Der 'richtige' Mittelwert i. d. Grundges. liegt zu 95% zw. 4,11 und 4,39.

Lösung: 4,11 * 500 = 2055

Kann dies so stimmen? Anhand der Aufgabenstellung ist mir icht ganz klar, ob die Erfahrungswerte als Stichprobe oder als Grundges. zählen...

Bezug
                
Bezug
Statistik - Aufgabentyp unklar: Antwort
Status: (Antwort) fertig Status 
Datum: 22:20 Mi 15.07.2009
Autor: luis52


> Hallo und vielen Dank Ihr beiden! Inspiriert durch Eure
> Antworten kam ich auf folgende Lösung:
>  [mm]\mu[/mm] = Summe(x * f) = (4 * 0,5) + (3 * 0,35) + (8 * 0,15) =
> 4,25

ok]

>  
> Std.-abweichung davon ist 1,64

[ok]

>  
> Setzt man diese Werte nun in ein Konfidenzintervall für
> Mittelwerte, sieht die Formel SO aus:

Hier bist du vollkommen auf dem Holzweg. Gesucht ist der Mindestumsatz $m_$ mit [mm] $0.95=P(\sum_{i=1}^nX_i\ge [/mm] m)$. Das hat Konfidenzintervallen rein gar nichts zu tun.

vg Luis



Bezug
                        
Bezug
Statistik - Aufgabentyp unklar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:13 Sa 18.07.2009
Autor: nachtgold

Ok, danke noch einmal f. d. Antwort. Ich werde nun nicht mehr darauf eingehen, weil die Klausur vorbei ist, und das Ganze mir somit völlig egal ist --> ist nicht 'böse' gemeint, aber ich bin froh, ab jetzt für immer keine höhere Mathematik mehr ertragen zu müssen:)


Hier noch mehr off-topic:
Ständig werden undefinierte Bezeichner verwendet, i. d. Literatur gibt es fast nie mal einleitende Fließtexte ('um was geht es überhaupt!?'), und die ach so tollen Formeln sind meist unvollständig (z. B. 'n'-te Wurzel, aber was n wann und wie umschließt, wird nie erwähnt...Schwierig auch darüber nachzudenken, wenn man nicht weiß, worum es überhaupt geht...).
Ich glaube auch, dass DAS (also die Art der Notation von Mathematik) die Ursache dafür ist, dass Soviele Probleme damit haben. Leider.
Übrigens: in der Softwareentwicklung gilt es als sehr schlechter Stil, wenn man Variablen 'x' oder 'y' o. ä. sporadisch benennt...


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de