www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Steckbriefaufgaben" - Steckbriefaufgabe
Steckbriefaufgabe < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Steckbriefaufgabe: gebrochen-rationale Funktionen
Status: (Frage) beantwortet Status 
Datum: 17:06 Mo 20.12.2010
Autor: Mene

Aufgabe
Eine gebrochen-rationale Funktion hat die Pole x= +- 2 mit VZW sowie den Nullstellen N1und 2 (+-1/0). Außderdem besitzt sie eine waagrechte Asymptote und dem Hochpunkt H(0/1). Gib einen möglichen Funktionsterm an und skizziere das Schaubild.

Kann mir hier vielleicht jemand weiterhelfen?? Ich kenne mich da irgendwie gar nciht aus, und weiß überhaupt nicht wie ich vorgehen soll. Danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Steckbriefaufgabe: erste Hinweise
Status: (Antwort) fertig Status 
Datum: 17:17 Mo 20.12.2010
Autor: Loddar

Hallo Mene,

[willkommenmr] !!


Dass eine waagerechte Asymptote existiert, deutet darauf hin, dass Zählergrad und Nennergrad gleich groß sind.


Durch die gegebenen Polstellen kennen wir die Nullstellen des Nenners (= Definitionslücken).

Die Nullstellen geben gleichzeitig die Nullstellen des Zählers an.

Damit ergibt sich schon einmal folgender Ansatz der Funktionsvorschrift:

$f(x) \ = \ [mm] A*\bruch{(x+1)*(x-1)}{(x+2)*(x-2)} [/mm] \ = \ [mm] A*\bruch{x^2-1}{x^2-4}$ [/mm]

Versuche nun, die Eigenschaften des gegebenen Hochpunktes (einschließlich Funktionswert) zu verwerten.


Gruß
Loddar


Bezug
                
Bezug
Steckbriefaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Mo 20.12.2010
Autor: Mene

Wow.
Das hilft mir schon mal ein großes Stück weiter.

Es ist doch so, wenn ich die zweite Ableitung =0 setze, bekomme ich den Extrempunkt raus. Hilft mir das hier weiter?
Und was genau sagt mir das A?


Bezug
                        
Bezug
Steckbriefaufgabe: einsetzen
Status: (Antwort) fertig Status 
Datum: 17:33 Mo 20.12.2010
Autor: Loddar

Hallo Mene!


Für Extremwerte muss die erste Ableitung gleich Null sein.

Und das [mm]A_[/mm] ist noch eine Unbekannte, welche Du noch bestimmen musst.

Zum Beispiel mittels [mm]f(0) \ = \ ... \ = \ 1[/mm] .


Gruß
Loddar


Bezug
                                
Bezug
Steckbriefaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:40 Mo 20.12.2010
Autor: Mene

Ahhh, wow.
Jetzt verstehe ich das! Ich weiß ja, dass der HOchpunkt auf der Kurve liegt, deshlab kann ich den ja einfach einsetzen.. =) Super!
Weil dann kommt für A=4 raus... =)
KÖnntest du mir vielleicht eine ähnliche aufgabe zum Üben geben??
Wäre sehr nett!

Bezug
                                        
Bezug
Steckbriefaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 07:37 Di 21.12.2010
Autor: angela.h.b.


> KÖnntest du mir vielleicht eine ähnliche aufgabe zum
> Üben geben??
> Wäre sehr nett!

Hallo,

mit etwas Suchen findest Du im Forum eine Fülle von Stekbriefaufgaben.

Schau z.B. ins Unterforum Steckbriefaufgaben.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de