www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Steigung
Steigung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Steigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:19 Mo 23.08.2004
Autor: nitro1185

Hallo!!Ist die Aussage richtig!!

Wenn sich zwei Funktionen (z.B) zwei Kreise in einem Punkt berühren, so haben beide Funktionen an diesem Punkt die gleiche Steigung!!Anders gesagt: Sie besitzen die gleiche Tangente,oder???

gruß daniel

        
Bezug
Steigung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Mo 23.08.2004
Autor: Hanno

Hi Daniel!
Ja, die Aussage ist richtig.
Beweis:
Nehmen wir an, dem wäre nicht so, d.h. es gäbe einen Punkt, an dem sich beide Graphen berühren, aber nicht die gleiche Steigung haben.
Bezeichnen wir den Berührpunkt mit [mm]x_0[/mm]. Des Weiteren seien die beiden zu diskutierenden Funktionen [mm]g[/mm] und [mm]f[/mm]
Da die Steigung die Veränderung eines Wertes an einem bestimmten Punkt angibt, und diese nicht gleich sind , muss für einen infinitesimal-kleinen Bereich rechts bzw. links von [mm]x_0[/mm] die eine Funktion größer bzw. kleiner als die andere sein. Dies folgt aus der Ungleichheit der Veränderung beider Funktionen, welche ein Synonym für die Steigung ist.
Wenn dies allerdings zutrifft, d.h. wenn links von [mm]x_0[/mm] eine Ungleichheit zwischen beiden Funktionswerten herrscht, rechts davon auch, jedoch die umgekehrte, denn kann kein Berührpunkt mehr sein, da sich beide Graphen in ihm schneiden.

Mathematisch ausgedrückt:
[mm]\limes_{\epsilon\to 0, \epsilon\not= 0}f(x_0+\epsilon)\not= g(x_0+\epsilon)[/mm]

Ich hoffe, dass das verständlich und natürlich auch richtig war. Falls nicht, bitte sofort losmeckern :)

Gruß,
Hanno

Bezug
        
Bezug
Steigung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:24 Di 24.08.2004
Autor: ladislauradu

Hallo Daniel, hallo Hanno!

Die Richtigkeit der Aussage kommt darauf an, was du unter "berühren" verstehst. Zwei Kreise schneiden sich im Allgemeinen in zwei Punkten. In diesem Fall ist die Aussage falsch. Wenn diese zwei Punkte immer näher kommen bis sie zusammenfallen ist die Aussage richtig. Am Besten macht euch eine Zeichnung.
Tangente verschieden:
[Dateianhang nicht öffentlich]
Tangente gleich:
[Dateianhang nicht öffentlich]

Schöne Grüße,
Ladis

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Anhang Nr. 2 (Typ: gif) [nicht öffentlich]
Bezug
                
Bezug
Steigung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:34 Di 24.08.2004
Autor: nitro1185

Genau das habe ich gemeint Ladis!!Danke für eure bestätigung!!!

Immer gut wenn man weiß,dass etwas stimmt!

Grüße daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de