Stetig Grenzwert beschränkt < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:38 Di 13.11.2007 | Autor: | MaKru |
Aufgabe | Es sei f : [ 0 , [mm] \infty [/mm] [ -> [mm] \IR [/mm] eine stetige Funktion, die in [mm] \infty [/mm] den Grenzwert b aus [mm] \IR [/mm] besitzt. Zeigen Sie, dass f beschränkt ist. (5 Punkte) |
Guten Tag!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Dass ein Grenzwert eine Schranke ist, scheint mir offensichtlich. Da ich aber weiß, dass ich (1) gerne mit Stetigkeit und Monotonie durcheinandergerate und (2) bei mathematischen Formulierungen eher zum Lyriker degeneriere, bitte ich Euch, meine zu kurz gegriffene Idee zu kommentieren.
Funktion f hat in [mm] \infty [/mm] den Grenzwert b. b ist also entweder das Infimum oder das Supremum von f. f ist deshalb entweder nach oben oder nach unten beschränkt.
Dass es für dieses Jonglieren mit Vokabeln auch nur einen einzigen Punkt gibt, bezweifele ich. Vermutlich ist eher ein [mm] \varepsilon [/mm] - [mm] \delta [/mm] - Beweis gefragt. Dafür müsste ich aber doch etwas über die Monotonie von f aussagen können und eine geeignete Form des [mm] \delta [/mm] finden, was mir beides nicht gelingt.
Für jeden Hinweis bin ich dankbar,
Christian
|
|
|
|
Das hat nichts mit oberen oder unteren Schranken zu tun. Zum Beispiel ist [mm] $e^{-x}\sin(x)$ [/mm] stetig mit Grenzwert $0$ fuer [mm] $x\rightarrow \infty$, [/mm] ist aber nicht durch $0$ von oben oder unten beschraenkt. Versuche es mal mit einem Widerspruchsbeweis: angenommen, $f$ ist nicht beschraenkt, dann gibt es eine (divergente) Folge (warum divergent und nicht konvergent?-> $f$ ist stetig) [mm] $x_n\rightarrow \infty, n\rightarrow \infty$ [/mm] so dass [mm] $|f(x_n)|>n$ [/mm] fuer alle [mm] $n\in\IN$. [/mm] Das vertraegt sich aber nicht mit der Bedingung, dass $f$ in [mm] $\infty$ [/mm] einen Grenzwert hat
|
|
|
|