www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetig differenzierbar.
Stetig differenzierbar. < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetig differenzierbar.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:49 Do 13.12.2012
Autor: quasimo

Aufgabe
ist die FunktioF: [mm] \IR^3-> \IR^3 [/mm]
F= [mm] \vektor{x \\ z \\y} [/mm]
stetig deifferenzierbar?

F: [mm] \IR^3 [/mm] -> [mm] \IR^3 [/mm] eine partiell differenzierbare Funktion und alle partiellen Ableitungen sind stetig ->F  total differenzierbar

[mm] \frac{\partial F}{\partial x}= \vektor{1 \\ 0 \\0} [/mm]
[mm] \frac{\partial F}{\partial y}= \vektor{0 \\ 0 \\1} [/mm]
[mm] \frac{\partial F}{\partial z}= \vektor{0 \\ 1 \\0} [/mm]



Da alle Vektorkomponenten von F stetig sind ist F  ein stetig differenzierbares Vektorfeld

        
Bezug
Stetig differenzierbar.: Antwort
Status: (Antwort) fertig Status 
Datum: 10:59 Do 13.12.2012
Autor: reverend

Hallo quasimo,

das sieht gut aus.

> ist die FunktioF: [mm]\IR^3-> \IR^3[/mm]
>   F= [mm]\vektor{x \\ z \\ y}[/mm]
>  
> stetig deifferenzierbar?
>  F: [mm]\IR^3[/mm] -> [mm]\IR^3[/mm] eine partiell differenzierbare Funktion

> und alle partiellen Ableitungen sind stetig ->F  total
> differenzierbar
>  
> [mm]\frac{\partial F}{\partial x}= \vektor{1 \\ 0 \\ 0}[/mm]
>  
> [mm]\frac{\partial F}{\partial y}= \vektor{0 \\ 0 \\ 1}[/mm]
>  
> [mm]\frac{\partial F}{\partial z}= \vektor{0 \\ 1 \\ 0}[/mm]
>  
> Da alle Vektorkomponenten von F stetig sind ist F  ein
> stetig differenzierbares Vektorfeld

So ist es. Es handelt sich ja auch nur um eine Spiegelung des [mm] \IR^3 [/mm] an der Ebene y=z, also nichts Aufregendes. ;-)

Grüße
reverend


Bezug
                
Bezug
Stetig differenzierbar.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:08 Do 13.12.2012
Autor: fred97


> Hallo quasimo,
>  
> das sieht gut aus.
>  
> > ist die FunktioF: [mm]\IR^3-> \IR^3[/mm]
>  >   F= [mm]\vektor{x \\ z \\ y}[/mm]
>  
> >  

> > stetig deifferenzierbar?
>  >  F: [mm]\IR^3[/mm] -> [mm]\IR^3[/mm] eine partiell differenzierbare

> Funktion
> > und alle partiellen Ableitungen sind stetig ->F  total
> > differenzierbar
>  >  
> > [mm]\frac{\partial F}{\partial x}= \vektor{1 \\ 0 \\ 0}[/mm]
>  >  
> > [mm]\frac{\partial F}{\partial y}= \vektor{0 \\ 0 \\ 1}[/mm]
>  >  
> > [mm]\frac{\partial F}{\partial z}= \vektor{0 \\ 1 \\ 0}[/mm]
>  >  
> > Da alle Vektorkomponenten von F stetig sind ist F  ein
> > stetig differenzierbares Vektorfeld
>
> So ist es.


Hallo reverend,

schau mal hier:

https://matheraum.de/read?i=935753

Gruß FRED


> Es handelt sich ja auch nur um eine Spiegelung
> des [mm]\IR^3[/mm] an der Ebene y=z, also nichts Aufregendes. ;-)
>  
> Grüße
>  reverend
>  


Bezug
        
Bezug
Stetig differenzierbar.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:06 Do 13.12.2012
Autor: fred97


> ist die FunktioF: [mm]\IR^3-> \IR^3[/mm]
>   F= [mm]\vektor{x \\ z \\y}[/mm]
>  
> stetig deifferenzierbar?
>  F: [mm]\IR^3[/mm] -> [mm]\IR^3[/mm] eine partiell differenzierbare Funktion

> und alle partiellen Ableitungen sind stetig ->F  total
> differenzierbar
>  
> [mm]\frac{\partial F}{\partial x}= \vektor{1 \\ 0 \\0}[/mm]
>  
> [mm]\frac{\partial F}{\partial y}= \vektor{0 \\ 0 \\1}[/mm]
>  
> [mm]\frac{\partial F}{\partial z}= \vektor{0 \\ 1 \\0}[/mm]
>  
>
>
> Da alle Vektorkomponenten von F stetig sind ist F  ein
> stetig differenzierbares Vektorfeld

Da F differenzierbar ist, ist F auch stetig !


Ich vermute, dass Dir nicht klar ist, was "stetig differenzierbar " bedeutet.

F ist stetig differenzierbar, wenn F (total) differenzierbar ist und wenn die Ableitung F' stetig ist.

   F' ist stetig  [mm] \gdw \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} [/mm] und  [mm] \frac{\partial F}{\partial z} [/mm]  sind stetig.

Bei obigem F ist natürlich klar, dass [mm] \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} [/mm] und  [mm] \frac{\partial F}{\partial z} [/mm]  stetig sind.

FRED

Bezug
                
Bezug
Stetig differenzierbar.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:26 Do 13.12.2012
Autor: quasimo

Impliziert also totale differenzierbarkeit stetigkeit?

LG

Bezug
                        
Bezug
Stetig differenzierbar.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:47 Do 13.12.2012
Autor: M.Rex


> Impliziert also totale differenzierbarkeit stetigkeit?
>  
> LG

Jede Funktion, die Differenzierbar ist, muss auch stetig sein.
Stetige Differenzierbarket bedeutet, dass auch die Ableitung wieder eine Stetige Funktion ist.

Marius


Bezug
                                
Bezug
Stetig differenzierbar.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:50 Do 13.12.2012
Autor: quasimo

Ah danke ;)

Bezug
                                        
Bezug
Stetig differenzierbar.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:11 Do 13.12.2012
Autor: fred97


> Ah danke ;)

Das habe ich Dir allerdings hier

   https://matheraum.de/read?i=935753

schon erzählt.

FRED


Bezug
                                                
Bezug
Stetig differenzierbar.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:47 Do 13.12.2012
Autor: quasimo

Das danke galt auch unteranderem dir ;D
Ja ich hab im ersten Mom. nicht überlegt^^
LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de