Stetige Fortsetzung < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:41 Di 01.05.2012 | Autor: | mart1n |
Aufgabe | Geben Sie für jede der folgenden Funktionen den maximalen Dedinitionsbereich D [mm] \in \IR [/mm] an und untersuchen Sie ihr Verhakten an den Rändern von D (inklusive - [mm] \infty [/mm] und + [mm] \infty)
[/mm]
[mm] h(x)=cos(\wurzel{x})+\wurzel{cos(x)} [/mm] |
Hallo,
habe folgende Frage zu obenstehender Aufgabe:
Den Definitionsbereich habe ich bereits bestimmt.
D [mm] \in [/mm] [ [mm] 2\pi [/mm] n, [mm] \pi [/mm] /2 [mm] +2\pi [/mm] n] [mm] \cup [/mm] [3/2 [mm] \pi [/mm] + 2 [mm] \pi [/mm] n , 2 [mm] \pi [/mm] (1+n)] n [mm] \in \IR [/mm] (nur positive und 0)
Außerdem habe ich auch das Verhalten für + [mm] \infty [/mm] bestimmt. Da es sich um eine Cosinusfunktion handelt gibt es keinen Grenzwert.
Ich habe lediglich Probleme mit dem Verhalten an den sonstigen Rändern. meiner meinung nach sind die Funktionen an den Rändern wie z.B. [mm] \pi [/mm] /2 noch betimmt und eine erläuterung ist hinfälltig. Bin mir allerdings nicht ganz sicher.
Vielen dank bereits im Vorraus.
Gruß
mart1n!
|
|
|
|
Hallo,
überprüfe mal deine Notation für den Definitionsbereich nochmal. Er ist zum einen faslch, und dann auch noch etwas umständlich formuliert. Es könnte sein, dass du einfach Probleme hast, eine vernünftige Notation zu finden. Hier als Tipp: der zweite Teil der Vereinigungsmenge kommt der Sache schon näher, hier ist aber insbesondere [mm] n\IR [/mm] natürlich Nonsens.
Bedenke einfach nochmal, dass die Definitionsmenge aus den beiden Forderungen
[mm] x\ge{0}\wedge{cos x}\ge{0}
[/mm]
hervorgeht. Wo ist die Kosinusfunktion überall größer gleich 0?
Zu deiner zweiten Frage: wenn man die Forderungen sauber aufschreibt wie oben, dann dürfte es klar sein, dass dies direkt aus der Tatsache folgt, dass die Wurzelfunktion nur für nichtnegative Zahlen definiert ist. Insbesondere sind damit die Teilintervalle des Definitionsbereichs sämtlich abgeschlossen und die Funktion an den Rändern somit definiert.
Was die Untersuchung für [mm] x->-\infty [/mm] hier in der Aufgabenstellung zu suchen hat, weiß ich auch nicht, es macht keinen Sinn. Für [mm] x->\infty [/mm] siehst du das ganz richtig: es gibt keinen Grenzwert, auch keinen uneigentlichen.
Gruß, Diophant
|
|
|
|