www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Stetige Verteilung
Stetige Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetige Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:21 Mo 04.07.2016
Autor: typusX

Aufgabe 1
Ein Passagierschiff sei für ein Passagiergewicht von maximal 72750 kg zugelassen und besitze 900 Sitzplätze. Nehmen Sie an, daß das Gewicht jedes einzelnen Passagiers normalverteilt mit Erwartungswert µ=80kg und die Standardabweichung=25kg sei, sowie daß das Gewicht der einzelnen Passagiere voneinander unabhängig sei.
Geben sie die Verteilung der Zufallsvariable X="Gesamtgewicht der Passagiere" für den Fall an, daß das Schiff vollbesetzt ist und bestimmen Sie, mit welcher Wahrscheinlichkeit das oben genannte zulässige Passagiergewicht (also das maximale zulässige Gesamtgewicht der Passagiere) überschritten wird. Wie groß ist die Wahrscheinlichkeit, wenn nur 892 Passagiere an Board sind?

Aufgabe 2
Man nehme an, daß das Gewicht zufällig ausgewählter Spargelstangen einer Normalverteilung mit Erwartungswert 60 Gramm und Standardabweichung 10 Gramm folgt, und daß das Gewicht verschiedener Stangen voneinander unabhängig sei.

1. Geben sie die Verteilung des Gesamtgewichts von 25 zufällig ausgewählten Stangen an.
2. Wie wahrscheinlich ist es, daß das Gesamtgewicht von 25 zufällig ausgewählten Stangen größer als 1600 Gramm ist?

Bei diesen zwei Aufgaben fehlt mir der Anhaltspunkt, was ich genau machen soll und was von mir gefordert wird.

Auf dem selben Aufgabenblatt wurde von mir gefordert die Wahrscheinlichkeit einer Normalverteilung per z-Transformation zu berechnen (+ Quantil). Aber mit diesem Wissen scheitere ich an den beiden oberen Aufgaben.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stetige Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:41 Mo 04.07.2016
Autor: huddel


> Ein Passagierschiff sei für ein Passagiergewicht von
> maximal 72750 kg zugelassen und besitze 900 Sitzplätze.
> Nehmen Sie an, daß das Gewicht jedes einzelnen Passagiers
> normalverteilt mit Erwartungswert µ=80kg und die
> Standardabweichung=25kg sei, sowie daß das Gewicht der
> einzelnen Passagiere voneinander unabhängig sei.
>  Geben sie die Verteilung der Zufallsvariable
> X="Gesamtgewicht der Passagiere" für den Fall an, daß das
> Schiff vollbesetzt ist und bestimmen Sie, mit welcher
> Wahrscheinlichkeit das oben genannte zulässige
> Passagiergewicht (also das maximale zulässige
> Gesamtgewicht der Passagiere) überschritten wird. Wie
> groß ist die Wahrscheinlichkeit, wenn nur 892 Passagiere
> an Board sind?
>  Man nehme an, daß das Gewicht zufällig ausgewählter
> Spargelstangen einer Normalverteilung mit Erwartungswert 60
> Gramm und Standardabweichung 10 Gramm folgt, und daß das
> Gewicht verschiedener Stangen voneinander unabhängig sei.
>
> 1. Geben sie die Verteilung des Gesamtgewichts von 25
> zufällig ausgewählten Stangen an.
>  2. Wie wahrscheinlich ist es, daß das Gesamtgewicht von
> 25 zufällig ausgewählten Stangen größer als 1600 Gramm
> ist?

>

>  Bei diesen zwei Aufgaben fehlt mir der Anhaltspunkt, was
> ich genau machen soll und was von mir gefordert wird.
>
> Auf dem selben Aufgabenblatt wurde von mir gefordert die
> Wahrscheinlichkeit einer Normalverteilung per
> z-Transformation zu berechnen (+ Quantil). Aber mit diesem
> Wissen scheitere ich an den beiden oberen Aufgaben.

Ich behaupte jetzt einfach mal, dass dir die z-Transformation hier nicht so viel hilft.

Wie ist denn die Normalverteilung definiert?
Was dir hier helfen dürfte ist die Dichte und Verteilungsfunktion.

Wenn du zwei normalverteilte Zufallsvariablen $X,Y [mm] \sim \mathcal{N}(80,25)$ [/mm] hast, wie ist die Summe $X + Y$ dieser beiden verteilt?
oder besser, wenn du $n$ normalverteilte Zufallsvariablen [mm] $X_i \sim \mathcal{N}(80,25)$ [/mm] $i = 1,...,n$ hast, wie ist die Summe [mm] $\sum_{i=1}^n X_i$ [/mm] verteilt?

Wie kannst du aus den Antworten auf diese 2(3) Fragen, die oben gefragte W-Keit berechnen. Die beiden Aufgaben laufen analog.

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

LG
Huddel :)


Bezug
                
Bezug
Stetige Verteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:23 Mo 04.07.2016
Autor: Gonozal_IX

Hiho,

> Wenn du zwei normalverteilte Zufallsvariablen [mm]X,Y \sim \mathcal{N}(80,25)[/mm] hast, wie ist die Summe [mm]X + Y[/mm] dieser beiden verteilt?

die Frage ist ohne Unabhängigkeit nur schwer zu beantworten ;-)
Aber Glücklicherweise können wir die ja annehmen.

Gruß,
Gono

Bezug
                        
Bezug
Stetige Verteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:46 Mo 04.07.2016
Autor: huddel

oh, natürlich, danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de