www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Stetigkeit+Differenzierbarkeit
Stetigkeit+Differenzierbarkeit < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit+Differenzierbarkeit: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:11 Di 13.02.2007
Autor: neuern

Aufgabe
Funktion die an der Stelle x0=-1 stetig, aber nicht differenzierbar ist

lsg. f(x)=|x|+1

hallo,
wie erkennt man so einfach wie möglich, dass diese funktion, stetig ist?
und wie kann man überprüfen ob sie differenzierbar ist?

        
Bezug
Stetigkeit+Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 Di 13.02.2007
Autor: XPatrickX


> Funktion die an der Stelle x0=-1 stetig, aber nicht
> differenzierbar ist
>  
> lsg. f(x)=|x|+1
>  hallo,
>  wie erkennt man so einfach wie möglich, dass diese
> funktion, stetig ist?
>  und wie kann man überprüfen ob sie differenzierbar ist?

Hallo
Eine Funktion ist stetig wenn sie keine Sprünge auf weißt. So kannst du die o.g. Funktion durchzeichnen ohne den bleistift abzusetzen.

f(x)=|x|+1

f(x) = x+1 für [mm] x\ge [/mm] 0
f(x) = -x+1 für [mm] x\le [/mm] 0

f'(x) = 1 für [mm] x\ge [/mm] 0
f'(x) = -1 für [mm] x\le [/mm] 0

Du siehst an der Stelle 0 hat die Funktion unterschiedliche Steigungen. Damit ist sie nicht differenzierbar.


Gruß Patrick




Bezug
        
Bezug
Stetigkeit+Differenzierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:45 Di 13.02.2007
Autor: Zwerglein

Hi, neuern,

> Funktion die an der Stelle x0=-1 stetig, aber nicht
> differenzierbar ist
>  
> lsg. f(x)=|x|+1

[abgelehnt]

Diese Funktion IST nämlich an der Stelle [mm] x_{0}= [/mm] -1 STETIG und DIFFERENZIERBAR!

Sieht die Lösung nicht vielmehr so aus:

f(x) = |x + 1|  ??

mfG!
Zwerglein

Bezug
                
Bezug
Stetigkeit+Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 Di 13.02.2007
Autor: neuern

ja, ihc hatte mich auch schon über die lösung gewundert..hmm

wir hatten mal gelernt dass eine fkt. stetig ist, wenn

lim(mit x->x0) f(x) = f(x0)    ...kann ich das jetz mit diesem x0=1 durch einsetzen oder sonstwas, irgendwie belegen?

Bezug
        
Bezug
Stetigkeit+Differenzierbarkeit: Lösung
Status: (Antwort) fertig Status 
Datum: 17:00 Di 13.02.2007
Autor: Kyle

Hi!

Deine neue Lösung ist richtig. Sonst "verschiebst" Du ja die Betragsfunktion nur um 1 nach oben.

Der Nachweis von Stetigkeit geht aber genau so wie beschrieben. Eine Funktion ist stetig in einem Punkt x, wenn [mm] \limes_{y\rightarrow\x} [/mm] f(y) = f(x) gilt. Klingt etwas kompliziert, ist aber beim Betrag ganz einfach.

Für den Nachweis der Nichtdifferenzierbarkeit in -1 zeigst Du halt das der [mm] \limes_{y\rightarrow\x} \bruch{f(y)-f(x)}{y-x} [/mm] unterschiedlich ist, wenn ich eine Folge habe die von oben gegen -1 geht und eine, die von unten gegen -1 geht. Dann kann der Limes nicht existieren (weil er eindeutig ist, wenn er existiert) und die Funktion ist dort nicht differenzierbar.

Liebe Grüße,
Kyle

Bezug
                
Bezug
Stetigkeit+Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:08 Di 13.02.2007
Autor: neuern

wenn man das jetz mal direkt auf meine Aufgabe bezieht, also das, mit der Stetigkeit
f(x)=|x+1| mit x0=-1

wie setze ich das dann in eben diese Gleichung [mm] \limes_{x\rightarrow\x0} [/mm] f(x) = f(x0), um es zu beweisen?



Bezug
                        
Bezug
Stetigkeit+Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 Di 13.02.2007
Autor: Zwerglein

Hi, neuern,

> wenn man das jetz mal direkt auf meine Aufgabe bezieht,
> also das, mit der Stetigkeit
>  f(x)=|x+1| mit x0=-1
>  
> wie setze ich das dann in eben diese Gleichung
> [mm]\limes_{x\rightarrow\x0}[/mm] f(x) = f(x0), um es zu beweisen?

Bei Betragsfunktionen empfiehlt es sich die Betragsstriche aufzulösen.
Das ergibt in diesem Fall:

f(x)=|x+1| = [mm] \begin{cases} x + 1, & \mbox{für } x \ge -1 \\ -x - 1, & \mbox{für } x < -1 \end{cases} [/mm]

Dann ist f(-1) = 0
[mm] \limes_{x\rightarrow -1+} [/mm] (x+1) = 0
und
[mm] \limes_{x\rightarrow -1-} [/mm] (-x-1) = 0

Daher: stetig bei x=-1.

Ableitung:
f'(x)= [mm] \begin{cases} 1, & \mbox{für } x > -1 \\ - 1, & \mbox{für } x < -1 \end{cases} [/mm]

Diesmal aber:

[mm] \limes_{x\rightarrow -1+} [/mm] f'(x) = 1

[mm] \limes_{x\rightarrow -1-} [/mm] f'(x) = -1

und daher: NICHT differenzierbar bei x=-1.

mfG!
Zwerglein


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de